Abstract

Sjögren's Syndrome Nuclear Autoantigen 1 (SSNA1/NA14) is a microtubule-associated protein with important functions in cilia, dividing cells and developing neurons. However, the direct effects of SSNA1 on microtubules are not known. We employed in vitro reconstitution with purified proteins and TIRF microscopy to investigate the activity of human SSNA1 on dynamic microtubule ends and lattices. Our results show that SSNA1 modulates all parameters of microtubule dynamic instability - slowing down the rates of growth, shrinkage and catastrophe, and promoting rescue. We find that SSNA1 forms stretches along growing microtubule ends and binds cooperatively to the microtubule lattice. Furthermore, SSNA1 is enriched on microtubule damage sites, occurring both naturally, as well as induced by the microtubule severing enzyme spastin. Finally, SSNA1 binding protects microtubules against spastin's severing activity. Taken together, our results demonstrate that SSNA1 is both a potent microtubule stabilizing protein and a novel sensor of microtubule damage; activities that likely underlie SSNA1's functions on microtubule structures in cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Elizabeth J Lawrence

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Goker Arpag

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6893-2678
  3. Cayetana Arnaiz

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marija Zanic

    Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
    For correspondence
    marija.zanic@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5127-5819

Funding

National Institutes of Health (T32CA119925)

  • Elizabeth J Lawrence

National Institutes of Health (R35GM119552)

  • Marija Zanic

National Science Foundation (MCB2018661)

  • Marija Zanic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lawrence et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,497
    views
  • 356
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth J Lawrence
  2. Goker Arpag
  3. Cayetana Arnaiz
  4. Marija Zanic
(2021)
SSNA1 stabilizes dynamic microtubules and detects microtubule damage
eLife 10:e67282.
https://doi.org/10.7554/eLife.67282

Share this article

https://doi.org/10.7554/eLife.67282

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yan Zhang, Hua Zhang
    Insight

    Long thought to have little relevance to ovarian physiology, the rete ovarii may have a role in follicular dynamics and reproductive health.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.