Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang  Is a corresponding author
  11. Haihua Liang  Is a corresponding author
  1. Northwest University, China
  2. Shanghai Jiao Tong University, China

Abstract

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.

Data availability

Diffraction data have been deposited in PDB under the accession code 6M3O

Article and author information

Author details

  1. Gukui Chen

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiashen Zhou

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yili Zuo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Weiping Huo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan Peng

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng Li

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yani Zhang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tietao Wang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8540-436X
  9. Lin Zhang

    Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liang Zhang

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    liangzhang2014@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Haihua Liang

    Northwest University, Xi'an, China
    For correspondence
    lianghh@nwu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9639-1867

Funding

National Natural Science Foundation of China (31700064)

  • Gukui Chen

National Natural Science Foundation of China (21722802)

  • Liang Zhang

National Natural Science Foundation of China (91853118)

  • Liang Zhang

National Natural Science Foundation of China (32170188)

  • Haihua Liang

National Natural Science Foundation of China (31870060)

  • Haihua Liang

Natural Science Basic Research Program of Shaanxi Province (2019JQ-134)

  • Gukui Chen

National Natural Science Foundation of China (32170178)

  • Gukui Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,919
    views
  • 337
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang
  11. Haihua Liang
(2021)
Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa
eLife 10:e67289.
https://doi.org/10.7554/eLife.67289

Share this article

https://doi.org/10.7554/eLife.67289

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.