Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang  Is a corresponding author
  11. Haihua Liang  Is a corresponding author
  1. Northwest University, China
  2. Shanghai Jiao Tong University, China

Abstract

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.

Data availability

Diffraction data have been deposited in PDB under the accession code 6M3O

Article and author information

Author details

  1. Gukui Chen

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiashen Zhou

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yili Zuo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Weiping Huo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan Peng

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng Li

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yani Zhang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tietao Wang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8540-436X
  9. Lin Zhang

    Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liang Zhang

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    liangzhang2014@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Haihua Liang

    Northwest University, Xi'an, China
    For correspondence
    lianghh@nwu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9639-1867

Funding

National Natural Science Foundation of China (31700064)

  • Gukui Chen

National Natural Science Foundation of China (21722802)

  • Liang Zhang

National Natural Science Foundation of China (91853118)

  • Liang Zhang

National Natural Science Foundation of China (32170188)

  • Haihua Liang

National Natural Science Foundation of China (31870060)

  • Haihua Liang

Natural Science Basic Research Program of Shaanxi Province (2019JQ-134)

  • Gukui Chen

National Natural Science Foundation of China (32170178)

  • Gukui Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,944
    views
  • 338
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang
  11. Haihua Liang
(2021)
Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa
eLife 10:e67289.
https://doi.org/10.7554/eLife.67289

Share this article

https://doi.org/10.7554/eLife.67289

Further reading

    1. Microbiology and Infectious Disease
    Yue Sun, Jingwei Li ... Xin Deng
    Research Article

    The model Gram-negative plant pathogen Pseudomonas syringae utilises hundreds of transcription factors (TFs) to regulate its functional processes, including virulence and metabolic pathways that control its ability to infect host plants. Although the molecular mechanisms of regulators have been studied for decades, a comprehensive understanding of genome-wide TFs in Psph 1448A remains limited. Here, we investigated the binding characteristics of 170 of 301 annotated TFs through chromatin immunoprecipitation sequencing (ChIP-seq). Fifty-four TFs, 62 TFs, and 147 TFs were identified in top-level, middle-level, and bottom-level, reflecting multiple higher-order network structures and direction of information flow. More than 40,000 TF pairs were classified into 13 three-node submodules which revealed the regulatory diversity of TFs in Psph 1448A regulatory network. We found that bottom-level TFs performed high co-associated scores to their target genes. Functional categories of TFs at three levels encompassed various regulatory pathways. Three and 25 master TFs were identified to involve in virulence and metabolic regulation, respectively. Evolutionary analysis and topological modularity network revealed functional variability and various conservation of TFs in P. syringae (Psph 1448A, Pst DC3000, Pss B728a, and Psa C48). Overall, our findings demonstrated a global transcriptional regulatory network of genome-wide TFs in Psph 1448A. This knowledge can advance the development of effective treatment and prevention strategies for related infectious diseases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.