Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang  Is a corresponding author
  11. Haihua Liang  Is a corresponding author
  1. Northwest University, China
  2. Shanghai Jiao Tong University, China

Abstract

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.

Data availability

Diffraction data have been deposited in PDB under the accession code 6M3O

Article and author information

Author details

  1. Gukui Chen

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiashen Zhou

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yili Zuo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Weiping Huo

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan Peng

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Meng Li

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yani Zhang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Tietao Wang

    Northwest University, Xi'an, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8540-436X
  9. Lin Zhang

    Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Shanghai Jiao Tong University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Liang Zhang

    Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, Shanghai, China
    For correspondence
    liangzhang2014@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Haihua Liang

    Northwest University, Xi'an, China
    For correspondence
    lianghh@nwu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9639-1867

Funding

National Natural Science Foundation of China (31700064)

  • Gukui Chen

National Natural Science Foundation of China (21722802)

  • Liang Zhang

National Natural Science Foundation of China (91853118)

  • Liang Zhang

National Natural Science Foundation of China (32170188)

  • Haihua Liang

National Natural Science Foundation of China (31870060)

  • Haihua Liang

Natural Science Basic Research Program of Shaanxi Province (2019JQ-134)

  • Gukui Chen

National Natural Science Foundation of China (32170178)

  • Gukui Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,863
    views
  • 331
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gukui Chen
  2. Jiashen Zhou
  3. Yili Zuo
  4. Weiping Huo
  5. Juan Peng
  6. Meng Li
  7. Yani Zhang
  8. Tietao Wang
  9. Lin Zhang
  10. Liang Zhang
  11. Haihua Liang
(2021)
Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa
eLife 10:e67289.
https://doi.org/10.7554/eLife.67289

Share this article

https://doi.org/10.7554/eLife.67289

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Megan E Amason, Cole J Beatty ... Edward A Miao
    Research Article

    Granulomas are defined by the presence of organized layers of immune cells that include macrophages. Granulomas are often characterized as a way for the immune system to contain an infection and prevent its dissemination. We recently established a mouse infection model where Chromobacterium violaceum induces the innate immune system to form granulomas in the liver. This response successfully eradicates the bacteria and returns the liver to homeostasis. Here, we sought to characterize the chemokines involved in directing immune cells to form the distinct layers of a granuloma. We use spatial transcriptomics to investigate the spatial and temporal expression of all CC and CXC chemokines and their receptors within this granuloma response. The expression profiles change dynamically over space and time as the granuloma matures and then resolves. To investigate the importance of monocyte-derived macrophages in this immune response, we studied the role of CCR2 during C. violaceum infection. Ccr2–/– mice had negligible numbers of macrophages, but large numbers of neutrophils, in the C. violaceum-infected lesions. In addition, lesions had abnormal architecture resulting in loss of bacterial containment. Without CCR2, bacteria disseminated and the mice succumbed to the infection. This indicates that macrophages are critical to form a successful innate granuloma in response to C. violaceum.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Nyasha Charura, Ernesto Llamas ... Alga Zuccaro
    Research Article

    Programmed cell death occurring during plant development (dPCD) is a fundamental process integral for plant growth and reproduction. Here, we investigate the connection between developmentally controlled PCD and fungal accommodation in Arabidopsis thaliana roots, focusing on the root cap-specific transcription factor ANAC033/SOMBRERO (SMB) and the senescence-associated nuclease BFN1. Mutations of both dPCD regulators increase colonization by the beneficial fungus Serendipita indica, primarily in the differentiation zone. smb-3 mutants additionally exhibit hypercolonization around the meristematic zone and a delay of S. indica-induced root-growth promotion. This demonstrates that root cap dPCD and rapid post-mortem clearance of cellular corpses represent a physical defense mechanism restricting microbial invasion of the root. Additionally, reporter lines and transcriptional analysis revealed that BFN1 expression is downregulated during S. indica colonization in mature root epidermal cells, suggesting a transcriptional control mechanism that facilitates the accommodation of beneficial microbes in the roots.