Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis

  1. Jenny K Gustafsson
  2. Jazmyne E Davis
  3. Tracy Rappai
  4. Keely G McDonald
  5. Devesha H Kulkarni
  6. Kathryn A Knoop
  7. Simon P Hogan
  8. James AJ Fitzpatrick
  9. Wayne I Lencer
  10. Rodney D Newberry  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Washington University in Saint Louis School of Medicine, United States
  3. University of Michigan, United States
  4. Washington University School of Medicine, United States
  5. Harvard Medical School, United States

Abstract

Intestinal goblet cells maintain the protective epithelial barrier through mucus secretion and yet sample lumenal substances for immune processing through formation of goblet cell associated antigen passages (GAPs). The cellular biology of GAPs and how these divergent processes are balanced and regulated by goblet cells remains unknown. Using high resolution light and electron microscopy, we found that in mice, GAPs were formed by an acetylcholine (ACh) dependent endocytic event remarkable for delivery of fluid phase cargo retrograde into the trans golgi network and across the cell by transcytosis - in addition to the expected transport of fluid phase cargo by endosomes to multi-vesicular bodies and lysosomes. While ACh also induced goblet cells to secrete mucins, ACh-induced GAP formation and mucin secretion were functionally independent and mediated by different receptors and signaling pathways, enabling goblet cells to differentially regulate these processes to accommodate the dynamically changing demands of the mucosal environment for barrier maintenance and sampling of lumenal substances.

Data availability

All data generated and analysed for this study are included in the manuscript and source data files for figure 8

Article and author information

Author details

  1. Jenny K Gustafsson

    Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jazmyne E Davis

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tracy Rappai

    Center for Cellular Imaging, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keely G McDonald

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Devesha H Kulkarni

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathryn A Knoop

    Center for Cellular Imaging, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2007-3066
  7. Simon P Hogan

    Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wayne I Lencer

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7346-2730
  10. Rodney D Newberry

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    For correspondence
    rnewberry@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4152-5191

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK097317)

  • Rodney D Newberry

Stiftelserna Wilhelm och Martina Lundgrens

  • Jenny K Gustafsson

Åke Wiberg Stiftelse

  • Jenny K Gustafsson

Jeanssons Stiftelser

  • Jenny K Gustafsson

National Institute of Allergy and Infectious Diseases (AI131342)

  • Rodney D Newberry

National Institute of Diabetes and Digestive and Kidney Diseases (DK109006)

  • Kathryn A Knoop

National Institute of Allergy and Infectious Diseases (AI136515)

  • Rodney D Newberry

National Institute of Allergy and Infectious Diseases (AI140755)

  • Rodney D Newberry

National Institute of Allergy and Infectious Diseases (AI112626)

  • Simon P Hogan

National Institute of Diabetes and Digestive and Kidney Diseases (DK048106)

  • Wayne I Lencer

Crohn's and Colitis Foundation (34835)

  • Jenny K Gustafsson

Vetenskapsrådet (2014-00366)

  • Jenny K Gustafsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kelly G Ten Hagen, National Institutes of Health, United States

Ethics

Animal experimentation: All animal procedures and protocols were performed in accordance with the Institutional Animal Care and Use Committee at Washington University School of Medicine (Animal Wellfare Assurance number: A-3381-01) and the Swedish animal welfare legislation and approved by the Swedish Laboratory Animal Ethical Committee in Gothenburg (Ethical permit ID number: 5.8.18-11053/2019.

Version history

  1. Received: February 8, 2021
  2. Accepted: October 20, 2021
  3. Accepted Manuscript published: October 22, 2021 (version 1)
  4. Version of Record published: November 16, 2021 (version 2)

Copyright

© 2021, Gustafsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,190
    views
  • 747
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenny K Gustafsson
  2. Jazmyne E Davis
  3. Tracy Rappai
  4. Keely G McDonald
  5. Devesha H Kulkarni
  6. Kathryn A Knoop
  7. Simon P Hogan
  8. James AJ Fitzpatrick
  9. Wayne I Lencer
  10. Rodney D Newberry
(2021)
Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis
eLife 10:e67292.
https://doi.org/10.7554/eLife.67292

Share this article

https://doi.org/10.7554/eLife.67292

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.