Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis

  1. Jenny K Gustafsson
  2. Jazmyne E Davis
  3. Tracy Rappai
  4. Keely G McDonald
  5. Devesha H Kulkarni
  6. Kathryn A Knoop
  7. Simon P Hogan
  8. James AJ Fitzpatrick
  9. Wayne I Lencer
  10. Rodney D Newberry  Is a corresponding author
  1. University of Gothenburg, Sweden
  2. Washington University in Saint Louis School of Medicine, United States
  3. University of Michigan, United States
  4. Washington University School of Medicine, United States
  5. Harvard Medical School, United States

Abstract

Intestinal goblet cells maintain the protective epithelial barrier through mucus secretion and yet sample lumenal substances for immune processing through formation of goblet cell associated antigen passages (GAPs). The cellular biology of GAPs and how these divergent processes are balanced and regulated by goblet cells remains unknown. Using high resolution light and electron microscopy, we found that in mice, GAPs were formed by an acetylcholine (ACh) dependent endocytic event remarkable for delivery of fluid phase cargo retrograde into the trans golgi network and across the cell by transcytosis - in addition to the expected transport of fluid phase cargo by endosomes to multi-vesicular bodies and lysosomes. While ACh also induced goblet cells to secrete mucins, ACh-induced GAP formation and mucin secretion were functionally independent and mediated by different receptors and signaling pathways, enabling goblet cells to differentially regulate these processes to accommodate the dynamically changing demands of the mucosal environment for barrier maintenance and sampling of lumenal substances.

Data availability

All data generated and analysed for this study are included in the manuscript and source data files for figure 8

Article and author information

Author details

  1. Jenny K Gustafsson

    Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Jazmyne E Davis

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tracy Rappai

    Center for Cellular Imaging, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keely G McDonald

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Devesha H Kulkarni

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathryn A Knoop

    Center for Cellular Imaging, Washington University in Saint Louis School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2007-3066
  7. Simon P Hogan

    Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. James AJ Fitzpatrick

    Department of Neuroscience, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Wayne I Lencer

    Department of Pediatrics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7346-2730
  10. Rodney D Newberry

    Medicine, Washington University in Saint Louis School of Medicine, St Louis, United States
    For correspondence
    rnewberry@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4152-5191

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK097317)

  • Rodney D Newberry

Stiftelserna Wilhelm och Martina Lundgrens

  • Jenny K Gustafsson

Åke Wiberg Stiftelse

  • Jenny K Gustafsson

Jeanssons Stiftelser

  • Jenny K Gustafsson

National Institute of Allergy and Infectious Diseases (AI131342)

  • Rodney D Newberry

National Institute of Diabetes and Digestive and Kidney Diseases (DK109006)

  • Kathryn A Knoop

National Institute of Allergy and Infectious Diseases (AI136515)

  • Rodney D Newberry

National Institute of Allergy and Infectious Diseases (AI140755)

  • Rodney D Newberry

National Institute of Allergy and Infectious Diseases (AI112626)

  • Simon P Hogan

National Institute of Diabetes and Digestive and Kidney Diseases (DK048106)

  • Wayne I Lencer

Crohn's and Colitis Foundation (34835)

  • Jenny K Gustafsson

Vetenskapsrådet (2014-00366)

  • Jenny K Gustafsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures and protocols were performed in accordance with the Institutional Animal Care and Use Committee at Washington University School of Medicine (Animal Wellfare Assurance number: A-3381-01) and the Swedish animal welfare legislation and approved by the Swedish Laboratory Animal Ethical Committee in Gothenburg (Ethical permit ID number: 5.8.18-11053/2019.

Copyright

© 2021, Gustafsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,072
    views
  • 841
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenny K Gustafsson
  2. Jazmyne E Davis
  3. Tracy Rappai
  4. Keely G McDonald
  5. Devesha H Kulkarni
  6. Kathryn A Knoop
  7. Simon P Hogan
  8. James AJ Fitzpatrick
  9. Wayne I Lencer
  10. Rodney D Newberry
(2021)
Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis
eLife 10:e67292.
https://doi.org/10.7554/eLife.67292

Share this article

https://doi.org/10.7554/eLife.67292

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.