Temporo-cerebellar connectivity underlies timing constraints in audition

  1. Anika Stockert
  2. Michael Schwartze
  3. David Poeppel
  4. Alfred Anwander
  5. Sonja Kotz  Is a corresponding author
  1. University of Leipzig, Germany
  2. Maastricht University, Netherlands
  3. Max Planck Institute for Empirical Aesthetics, Germany
  4. Max Planck Institute for Human Cognitive and Brain Sciences, Germany

Abstract

The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.

Data availability

There is restricted access to the data due to German legal regulations of patient protection.We have made all data which we can legally share accessible via figure share (link is included in the resource statement). We have provided all data (lesion data, scripts, behavioral data that allowed lesion-symptom mapping) in our figure share account for reproduction of the critical seed region for a tracking analysis.Anonymisation of MRI/DTI data is not allowed either through the ethics agreement nor the participants' consent. We cannot do anything about this as these are the legal regulations that we have to deal with. We have made a clear statement that we seek open dialogue about how we have analysed our data. Further, given the data that we have provided, any interested researcher can (1) approach us about our analysis, (2) can take a set of open source age-matched structural MRI/DTI data to replicated our results

Article and author information

Author details

  1. Anika Stockert

    Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael Schwartze

    Neuropsyhology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. David Poeppel

    Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfred Anwander

    Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4861-4808
  5. Sonja Kotz

    Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    For correspondence
    sonja.kotz@maastrichtuniversity.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5894-4624

Funding

Deutsche Forschungsgemeinschaft (DFG KO 2268/6-1)

  • Sonja Kotz

Dissertation award University of Leipzig (none)

  • Anika Stockert

Max-Planck-Gesellschaft (none)

  • Sonja Kotz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy D Griffiths, University of Newcastle, United Kingdom

Ethics

Human subjects: The protocol of the current research was approved by the ethics committee of the University of Leipzig, Germany (Protocol Number: 953). All participants provided written, informed consent before the start of data collection.

Version history

  1. Preprint posted: February 7, 2021 (view preprint)
  2. Received: February 7, 2021
  3. Accepted: September 9, 2021
  4. Accepted Manuscript published: September 20, 2021 (version 1)
  5. Version of Record published: September 29, 2021 (version 2)
  6. Version of Record updated: September 30, 2021 (version 3)

Copyright

© 2021, Stockert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 885
    views
  • 149
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anika Stockert
  2. Michael Schwartze
  3. David Poeppel
  4. Alfred Anwander
  5. Sonja Kotz
(2021)
Temporo-cerebellar connectivity underlies timing constraints in audition
eLife 10:e67303.
https://doi.org/10.7554/eLife.67303

Share this article

https://doi.org/10.7554/eLife.67303

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.