Temporo-cerebellar connectivity underlies timing constraints in audition

  1. Anika Stockert
  2. Michael Schwartze
  3. David Poeppel
  4. Alfred Anwander
  5. Sonja Kotz  Is a corresponding author
  1. University of Leipzig, Germany
  2. Maastricht University, Netherlands
  3. Max Planck Institute for Empirical Aesthetics, Germany
  4. Max Planck Institute for Human Cognitive and Brain Sciences, Germany

Abstract

The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.

Data availability

There is restricted access to the data due to German legal regulations of patient protection.We have made all data which we can legally share accessible via figure share (link is included in the resource statement). We have provided all data (lesion data, scripts, behavioral data that allowed lesion-symptom mapping) in our figure share account for reproduction of the critical seed region for a tracking analysis.Anonymisation of MRI/DTI data is not allowed either through the ethics agreement nor the participants' consent. We cannot do anything about this as these are the legal regulations that we have to deal with. We have made a clear statement that we seek open dialogue about how we have analysed our data. Further, given the data that we have provided, any interested researcher can (1) approach us about our analysis, (2) can take a set of open source age-matched structural MRI/DTI data to replicated our results

Article and author information

Author details

  1. Anika Stockert

    Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael Schwartze

    Neuropsyhology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. David Poeppel

    Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfred Anwander

    Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4861-4808
  5. Sonja Kotz

    Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    For correspondence
    sonja.kotz@maastrichtuniversity.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5894-4624

Funding

Deutsche Forschungsgemeinschaft (DFG KO 2268/6-1)

  • Sonja Kotz

Dissertation award University of Leipzig (none)

  • Anika Stockert

Max-Planck-Gesellschaft (none)

  • Sonja Kotz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The protocol of the current research was approved by the ethics committee of the University of Leipzig, Germany (Protocol Number: 953). All participants provided written, informed consent before the start of data collection.

Reviewing Editor

  1. Timothy D Griffiths, University of Newcastle, United Kingdom

Publication history

  1. Preprint posted: February 7, 2021 (view preprint)
  2. Received: February 7, 2021
  3. Accepted: September 9, 2021
  4. Accepted Manuscript published: September 20, 2021 (version 1)
  5. Version of Record published: September 29, 2021 (version 2)
  6. Version of Record updated: September 30, 2021 (version 3)

Copyright

© 2021, Stockert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 787
    Page views
  • 135
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anika Stockert
  2. Michael Schwartze
  3. David Poeppel
  4. Alfred Anwander
  5. Sonja Kotz
(2021)
Temporo-cerebellar connectivity underlies timing constraints in audition
eLife 10:e67303.
https://doi.org/10.7554/eLife.67303

Further reading

    1. Neuroscience
    Laura K Globig, Nora Holtz, Tali Sharot
    Research Article

    The powerful allure of social media platforms has been attributed to the human need for social rewards. Here, we demonstrate that the spread of misinformation on such platforms is facilitated by existing social ‘carrots’ (e.g., ‘likes’) and ‘sticks’ (e.g., ‘dislikes’) that are dissociated from the veracity of the information shared. Testing 951 participants over six experiments, we show that a slight change to the incentive structure of social media platforms, such that social rewards and punishments are contingent on information veracity, produces a considerable increase in the discernment of shared information. Namely, an increase in the proportion of true information shared relative to the proportion of false information shared. Computational modeling (i.e., drift-diffusion models) revealed the underlying mechanism of this effect is associated with an increase in the weight participants assign to evidence consistent with discerning behavior. The results offer evidence for an intervention that could be adopted to reduce misinformation spread, which in turn could reduce violence, vaccine hesitancy and political polarization, without reducing engagement.

    1. Neuroscience
    Benjamin M Zemel, Alexander A Nevue ... Henrique von Gersdorff
    Research Article Updated

    Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.