1. Neuroscience
Download icon

Temporo-cerebellar connectivity underlies timing constraints in audition

  1. Anika Stockert
  2. Michael Schwartze
  3. David Poeppel
  4. Alfred Anwander
  5. Sonja Kotz  Is a corresponding author
  1. University of Leipzig, Germany
  2. Maastricht University, Netherlands
  3. Max Planck Institute for Empirical Aesthetics, Germany
  4. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
Research Article
  • Cited 0
  • Views 504
  • Annotations
Cite this article as: eLife 2021;10:e67303 doi: 10.7554/eLife.67303


The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short-timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion- guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.

Data availability

There is restricted access to the data due to German legal regulations of patient protection.We have made all data which we can legally share accessible via figure share (link is included in the resource statement). We have provided all data (lesion data, scripts, behavioral data that allowed lesion-symptom mapping) in our figure share account for reproduction of the critical seed region for a tracking analysis.Anonymisation of MRI/DTI data is not allowed either through the ethics agreement nor the participants' consent. We cannot do anything about this as these are the legal regulations that we have to deal with. We have made a clear statement that we seek open dialogue about how we have analysed our data. Further, given the data that we have provided, any interested researcher can (1) approach us about our analysis, (2) can take a set of open source age-matched structural MRI/DTI data to replicated our results

Article and author information

Author details

  1. Anika Stockert

    Department of Neurology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael Schwartze

    Neuropsyhology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. David Poeppel

    Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Alfred Anwander

    Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4861-4808
  5. Sonja Kotz

    Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5894-4624


Deutsche Forschungsgemeinschaft (DFG KO 2268/6-1)

  • Sonja Kotz

Dissertation award University of Leipzig (none)

  • Anika Stockert

Max-Planck-Gesellschaft (none)

  • Sonja Kotz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: The protocol of the current research was approved by the ethics committee of the University of Leipzig, Germany (Protocol Number: 953). All participants provided written, informed consent before the start of data collection.

Reviewing Editor

  1. Timothy D Griffiths, University of Newcastle, United Kingdom

Publication history

  1. Preprint posted: February 7, 2021 (view preprint)
  2. Received: February 7, 2021
  3. Accepted: September 9, 2021
  4. Accepted Manuscript published: September 20, 2021 (version 1)
  5. Version of Record published: September 29, 2021 (version 2)
  6. Version of Record updated: September 30, 2021 (version 3)


© 2021, Stockert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 504
    Page views
  • 86
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Hemin Feng et al.
    Research Article Updated

    Although fear memory formation is essential for survival and fear-related mental disorders, the neural circuitry and mechanism are incompletely understood. Here, we utilized trace fear conditioning to study the formation of trace fear memory in mice. We identified the entorhinal cortex (EC) as a critical component of sensory signaling to the amygdala. We adopted both loss-of-function and gain-of-function experiments to demonstrate that release of the cholecystokinin (CCK) from the EC is required for trace fear memory formation. We discovered that CCK-positive neurons project from the EC to the lateral nuclei of the amygdala (LA), and inhibition of CCK-dependent signaling in the EC prevented long-term potentiation of the auditory response in the LA and formation of trace fear memory. In summary, high-frequency activation of EC neurons triggers the release of CCK in their projection terminals in the LA, potentiating auditory response in LA neurons. The neural plasticity in the LA leads to trace fear memory formation.

    1. Neuroscience
    Gordon H Petty et al.
    Research Article

    Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.