Abstract

In this era of rising antibiotic resistance, in contrast to our increasing understanding of mechanisms that cause resistance, our understanding of mechanisms that influence the propensity to evolve resistance remains limited. Here, we identified genetic factors that facilitate the evolution of resistance to carbapenems, the antibiotic of 'last resort,' in Klebsiella pneumoniae, the major carbapenem resistant species. In clinical isolates, we found that high-level transposon insertional mutagenesis plays an important role in contributing to high-level resistance frequencies in several major and emerging carbapenem-resistant lineages. A broader spectrum of resistance-conferring mutations for select carbapenems such as ertapenem also enables higher resistance frequencies and importantly, creates stepping-stones to achieve high-level resistance to all carbapenems. These mutational mechanisms can contribute to the evolution of resistance, in conjunction with the loss of systems that restrict horizontal resistance gene uptake, such as the CRISPR-Cas system. Given the need for greater antibiotic stewardship, these findings argue that in addition to considering the current efficacy of an antibiotic for a clinical isolate in antibiotic selection, considerations of future efficacy are also important. The genetic background of a clinical isolate and the exact antibiotic identity can and should also be considered as it is a determinant of a strain's propensity to become resistant. Together, these findings thus provide a molecular framework for understanding acquisition of carbapenem resistance in K. pneumoniae with important implications for diagnosing and treating this important class of pathogens.

Data availability

All data generated or analyzed during this study are included in this article and in the supplementary tables. Sequencing data is deposited to NCBI under the accession number PRJNA670748.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Peijun Ma

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7670-7016
  2. Lorrie L He

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alejandro Pironti

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hannah H Laibinis

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph M Ernst

    Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abigail L Manson

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3800-0714
  7. Roby P Bhattacharyya

    Infectious Diseases and Micriobiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6955-5088
  8. Ashlee M Earl

    Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jonathan Livny

    Genome Sequencing & Analysis Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Deborah Hung

    Infectious Diseases and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, United States
    For correspondence
    dhung@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4262-0673

Funding

National Institute of Allergy and Infectious Diseases (5R01AI117043-05)

  • Deborah Hung

National Institute of Allergy and Infectious Diseases (U19AI110818)

  • Ashlee M Earl

Anita and Josh Bekenstein Gram Negative Gift

  • Deborah Hung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,212
    views
  • 476
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peijun Ma
  2. Lorrie L He
  3. Alejandro Pironti
  4. Hannah H Laibinis
  5. Christoph M Ernst
  6. Abigail L Manson
  7. Roby P Bhattacharyya
  8. Ashlee M Earl
  9. Jonathan Livny
  10. Deborah Hung
(2021)
Genetic determinants facilitating the evolution of resistance to carbapenem antibiotics
eLife 10:e67310.
https://doi.org/10.7554/eLife.67310

Share this article

https://doi.org/10.7554/eLife.67310

Further reading

    1. Evolutionary Biology
    Toni de Dios Martinez, Claudia Fontsere ... Carles Lalueza-Fox
    Research Article

    The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.

    1. Evolutionary Biology
    Kun-sheng Du, Jin Guo ... Ai-lin Chen
    Research Article

    Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites – a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.