Contingency and chance erase necessity in the experimental evolution of ancestral proteins

Abstract

The roles of chance, contingency, and necessity in evolution is unresolved, because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select B-cell-lymphoma-2-family proteins to acquire protein-protein-interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences – and likely other proteins, too – are idiosyncratic products of a particular, unpredictable course of historical events.

Data availability

The high throughput sequencing data of evolved BCL-2 family protein variants were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) databases. They can be accessed via BioProject: PRJNA647218. The processed sequencing data are available on Dryad (https://doi.org/10.5061/dryad.866t1g1ns). The coding scripts and reference sequences for processing the data are available on Github (https://github.com/JoeThorntonLab/BCL2.ChanceAndContingency).

The following data sets were generated

Article and author information

Author details

  1. Victoria Cochran Xie

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Jinyue Pu

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    pujy@uchicago.edu
    Competing interests
    Jinyue Pu, Has a patent on the proximity-dependent split RNAP technology used in this work (US Patent App. 16/305,298, 2020)..
  3. Brian PH Metzger

    Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4878-2913
  4. Joseph W Thornton

    Department of Ecology and Evolution, University of Chicago, Chicago, United States
    For correspondence
    joet1@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9589-6994
  5. Bryan C Dickinson

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    Dickinson@uchicago.edu
    Competing interests
    Bryan C Dickinson, Has a patent on the proximity-dependent split RNAP technology used in this work (US Patent App. 16/305,298, 2020)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9616-1911

Funding

National Institutes of Health (R01GM131128)

  • Joseph W Thornton

National Institutes of Health (R01GM121931)

  • Joseph W Thornton

National Institutes of Health (R01GM139007)

  • Joseph W Thornton

National Institutes of Health (F32GM122251)

  • Brian PH Metzger

National Science Foundation (DGE-1746045)

  • Victoria Cochran Xie

National Science Foundation (1749364)

  • Bryan C Dickinson

The content is solely the responsibility of the authors and the funders had no input on the study design, analysis, or conclusions.

Reviewing Editor

  1. Virginie Courtier-Orgogozo, Université Paris-Diderot CNRS, France

Version history

  1. Received: February 8, 2021
  2. Accepted: May 30, 2021
  3. Accepted Manuscript published: June 1, 2021 (version 1)
  4. Version of Record published: July 15, 2021 (version 2)

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,744
    views
  • 950
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Victoria Cochran Xie
  2. Jinyue Pu
  3. Brian PH Metzger
  4. Joseph W Thornton
  5. Bryan C Dickinson
(2021)
Contingency and chance erase necessity in the experimental evolution of ancestral proteins
eLife 10:e67336.
https://doi.org/10.7554/eLife.67336

Share this article

https://doi.org/10.7554/eLife.67336

Further reading

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.