Contingency and chance erase necessity in the experimental evolution of ancestral proteins

Abstract

The roles of chance, contingency, and necessity in evolution is unresolved, because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select B-cell-lymphoma-2-family proteins to acquire protein-protein-interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences – and likely other proteins, too – are idiosyncratic products of a particular, unpredictable course of historical events.

Data availability

The high throughput sequencing data of evolved BCL-2 family protein variants were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) databases. They can be accessed via BioProject: PRJNA647218. The processed sequencing data are available on Dryad (https://doi.org/10.5061/dryad.866t1g1ns). The coding scripts and reference sequences for processing the data are available on Github (https://github.com/JoeThorntonLab/BCL2.ChanceAndContingency).

The following data sets were generated

Article and author information

Author details

  1. Victoria Cochran Xie

    Department of Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Jinyue Pu

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    pujy@uchicago.edu
    Competing interests
    Jinyue Pu, Has a patent on the proximity-dependent split RNAP technology used in this work (US Patent App. 16/305,298, 2020)..
  3. Brian PH Metzger

    Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4878-2913
  4. Joseph W Thornton

    Department of Ecology and Evolution, University of Chicago, Chicago, United States
    For correspondence
    joet1@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9589-6994
  5. Bryan C Dickinson

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    Dickinson@uchicago.edu
    Competing interests
    Bryan C Dickinson, Has a patent on the proximity-dependent split RNAP technology used in this work (US Patent App. 16/305,298, 2020)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9616-1911

Funding

National Institutes of Health (R01GM131128)

  • Joseph W Thornton

National Institutes of Health (R01GM121931)

  • Joseph W Thornton

National Institutes of Health (R01GM139007)

  • Joseph W Thornton

National Institutes of Health (F32GM122251)

  • Brian PH Metzger

National Science Foundation (DGE-1746045)

  • Victoria Cochran Xie

National Science Foundation (1749364)

  • Bryan C Dickinson

The content is solely the responsibility of the authors and the funders had no input on the study design, analysis, or conclusions.

Copyright

© 2021, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,957
    views
  • 974
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Victoria Cochran Xie
  2. Jinyue Pu
  3. Brian PH Metzger
  4. Joseph W Thornton
  5. Bryan C Dickinson
(2021)
Contingency and chance erase necessity in the experimental evolution of ancestral proteins
eLife 10:e67336.
https://doi.org/10.7554/eLife.67336

Share this article

https://doi.org/10.7554/eLife.67336

Further reading

    1. Evolutionary Biology
    Ayumi Mizuno, Malgorzata Lagisz ... Shinichi Nakagawa
    Research Article

    Eyespot patterns have evolved in many prey species. These patterns were traditionally explained by the eye mimicry hypothesis, which proposes that eyespots resembling vertebrate eyes function as predator avoidance. However, it is possible that eyespots do not mimic eyes: according to the conspicuousness hypothesis, eyespots are just one form of vivid signals where only conspicuousness matters. They might work simply through neophobia or unfamiliarity, without necessarily implying aposematism or the unprofitability to potential predators. To test these hypotheses and explore factors influencing predators’ responses, we conducted a meta-analysis with 33 empirical papers that focused on bird responses to both real lepidopterans and artificial targets with conspicuous patterns (i.e. eyespots and non-eyespots). Supporting the latter hypothesis, the results showed no clear difference in predator avoidance efficacy between eyespots and non-eyespots. When comparing geometric pattern characteristics, bigger pattern sizes and smaller numbers of patterns were more effective in preventing avian predation. This finding indicates that single concentric patterns have stronger deterring effects than paired ones. Taken together, our study supports the conspicuousness hypothesis more than the eye mimicry hypothesis. Due to the number and species coverage of published studies so far, the generalisability of our conclusion may be limited. The findings highlight that pattern conspicuousness is key to eliciting avian avoidance responses, shedding a different light on this classic example of signal evolution.

    1. Evolutionary Biology
    Amanda D Melin
    Insight

    Studying the fecal microbiota of wild baboons helps provide new insight into the factors that influence biological aging.