Increasing human motor skill acquisition by driving theta-gamma coupling

  1. Haya Akkad  Is a corresponding author
  2. Joshua Dupont-Hadwen
  3. Edward Kane
  4. Carys Evans
  5. Liam Barrett
  6. Amba Frese
  7. Irena Tetkovic
  8. Sven Bestmann  Is a corresponding author
  9. Charlotte J Stagg  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Oxford, United Kingdom

Abstract

Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude-modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimising functional improvements in response to training or therapy.

Data availability

All data generated or analysed during this study are included in the manuscript and freely available on the open science framework (https://osf.io/xjpef). Details of data analysis, experimental design and protocol were pre-registered prior to data collection and freely available on the open science framework - Registration form: osf.io/xjpef; Files: osf.io/452f8/files/

Article and author information

Author details

  1. Haya Akkad

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    For correspondence
    haya.akkad.14@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5621-3318
  2. Joshua Dupont-Hadwen

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Edward Kane

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Carys Evans

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Liam Barrett

    Department of Experimental Psychology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Amba Frese

    Department of Experimental Psychology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Irena Tetkovic

    Department of Experimental Psychology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Sven Bestmann

    epartment for Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
    For correspondence
    s.bestmann@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6867-9545
  9. Charlotte J Stagg

    FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    charlotte.stagg@ndcn.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Royal Society (Sir Henry Dale Fellowship,102584/Z/13/Z)

  • Charlotte J Stagg

Brain Research UK (201617-03)

  • Sven Bestmann

Brain Research UK (Graduate Student Fellowship)

  • Haya Akkad

Wellcome Trust (Sir Henry Dale Fellowship - 102584/Z/13/Z)

  • Charlotte J Stagg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, Northwestern University, United States

Ethics

Human subjects: Ethical permission for this study was granted by the University College London Research Ethics Committee (UCLREC: 6285/001). Written informed consent was obtained from all volunteers prior to data collection.

Version history

  1. Preprint posted: December 20, 2019 (view preprint)
  2. Received: February 8, 2021
  3. Accepted: November 23, 2021
  4. Accepted Manuscript published: November 23, 2021 (version 1)
  5. Version of Record published: December 20, 2021 (version 2)

Copyright

© 2021, Akkad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,782
    views
  • 439
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haya Akkad
  2. Joshua Dupont-Hadwen
  3. Edward Kane
  4. Carys Evans
  5. Liam Barrett
  6. Amba Frese
  7. Irena Tetkovic
  8. Sven Bestmann
  9. Charlotte J Stagg
(2021)
Increasing human motor skill acquisition by driving theta-gamma coupling
eLife 10:e67355.
https://doi.org/10.7554/eLife.67355

Share this article

https://doi.org/10.7554/eLife.67355

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Jongkyun Kang, Guodong Huang ... Jie Shen
    Research Article

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.