Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis

Abstract

Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.

Data availability

Sequencing data have been deposited in GEO under Accession Code GSE168823Complete Source Data are provided

The following data sets were generated

Article and author information

Author details

  1. Juliet R Girard

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8274-2136
  2. Lauren M Goins

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Dung M Vuu

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Mark S Sharpley

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Carrie M Spratford

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Shreya R Mantri

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Utpal Banerjee

    Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    banerjee@mbi.ucla.edu
    Competing interests
    Utpal Banerjee, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6247-0284

Funding

National Heart, Lung, and Blood Institute (R01-HL067395)

  • Utpal Banerjee

National Cancer Institute (R01-CA217608)

  • Utpal Banerjee

National Heart, Lung, and Blood Institute (T32-HL69766)

  • Juliet R Girard

National Institute of General Medical Sciences (K12-GM106996)

  • Juliet R Girard

National Cancer Institute (T32-CA009056)

  • Lauren M Goins

National Heart, Lung, and Blood Institute (T32-HL863458)

  • Carrie M Spratford

Center for Global Mentoring at UCLA-DOE Institute for Genomics & Proteomics

  • Dung M Vuu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Girard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliet R Girard
  2. Lauren M Goins
  3. Dung M Vuu
  4. Mark S Sharpley
  5. Carrie M Spratford
  6. Shreya R Mantri
  7. Utpal Banerjee
(2021)
Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis
eLife 10:e67516.
https://doi.org/10.7554/eLife.67516

Share this article

https://doi.org/10.7554/eLife.67516

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Olivia B Taylor, Nicholas DeGroff ... Andy J Fischer
    Research Article

    The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

    1. Developmental Biology
    Kayleigh Bozon, Hartmut Cuny ... Sally L Dunwoodie
    Research Article

    Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.