Stress diminishes outcome but enhances response representations during instrumental learning

  1. Jacqueline Katharina Meier
  2. Bernhard P Staresina
  3. Lars Schwabe  Is a corresponding author
  1. Universität Hamburg, Germany
  2. University of Birmingham, United Kingdom

Abstract

Stress may shift behavioural control from a goal-directed system that encodes action-outcome relationships, to a habitual system that learns stimulus-response associations. Although this shift to habits is highly relevant for stress-related psychopathologies, limitations of existing behavioural paradigms hinders research from answering the fundamental question of whether the stress-induced bias to habits is due to reduced outcome processing, or enhanced response processing at the time of stimulus presentation - or both. Here, we used EEG-based multivariate pattern analysis to decode neural outcome representations crucial for goal-directed control, as well as response representations during instrumental learning. We show that stress reduced outcome representations but enhanced response representations. Both were directly associated with a behavioural index of habitual responding. Furthermore, changes in outcome and response representations were uncorrelated, suggesting that these may reflect distinct processes. Our findings indicate that habitual behaviour under stress may be the result of both enhanced stimulus-response processing and diminished outcome processing.

Data availability

Data reported in this manuscript are available from the website: https://github.com/08122019/From-goal-directed-action-to-habit.

Article and author information

Author details

  1. Jacqueline Katharina Meier

    Department of Cognitive Psychology, Universität Hamburg, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Bernhard P Staresina

    Department of Experimental Psychology, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0558-9745
  3. Lars Schwabe

    Department of Cognitive Psychology, Universität Hamburg, Hamburg, Germany
    For correspondence
    lars.schwabe@uni-hamburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4429-4373

Funding

Deutsche Forschungsgemeinschaft (SCHW1357/23-1)

  • Lars Schwabe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided informed consent before participation in the experiment. The experiment was performed in line with the Declaration of Helsinki and approved by the ethics committee of the Faculty of Psychology and Human Movement Sciences at the Universität Hamburg (2018_197_Schwabe).

Copyright

© 2022, Meier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,287
    views
  • 293
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jacqueline Katharina Meier
  2. Bernhard P Staresina
  3. Lars Schwabe
(2022)
Stress diminishes outcome but enhances response representations during instrumental learning
eLife 11:e67517.
https://doi.org/10.7554/eLife.67517

Share this article

https://doi.org/10.7554/eLife.67517

Further reading

    1. Neuroscience
    Ilya A Rybak, Natalia A Shevtsova ... Alain Frigon
    Research Article

    Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion. We provide evidence that the spinal locomotor network operates in different regimes depending on locomotor speed. In an intact system, at slow speeds (<0.4 m/s), the spinal network operates in a non-oscillating state-machine regime and requires sensory feedback or external inputs for phase transitions. Removing sensory feedback related to limb extension prevents locomotor oscillations at slow speeds. With increasing speed and supraspinal drives, the spinal network switches to a flexor-driven oscillatory regime and then to a classical half-center regime. Following spinal transection, the model predicts that the spinal network can only operate in the state-machine regime. Our results suggest that the spinal network operates in different regimes for slow exploratory and fast escape locomotor behaviors, making use of different control mechanisms.

    1. Neuroscience
    Tian Yuan, Li Wang, Yi Jiang
    Research Article

    Perceiving emotions from the movements of other biological entities is critical for human survival and interpersonal interactions. Here, we report that emotional information conveyed by point-light biological motion (BM) triggered automatic physiological responses as reflected in pupil size. Specifically, happy BM evoked larger pupil size than neutral and sad BM, while sad BM induced a smaller pupil response than neutral BM. Moreover, this happy over sad pupil dilation effect is negatively correlated with individual autistic traits. Notably, emotional BM with only local motion features retained could also exert modulations on pupils. Compared with intact BM, both happy and sad local BM evoked stronger pupil responses than neutral local BM starting from an earlier time point, with no difference between the happy and sad conditions. These results revealed a fine-grained pupil-related emotional modulation induced by intact BM and a coarse but rapid modulation by local BM, demonstrating multi-level processing of emotions in life motion signals. Taken together, our findings shed new light on BM emotion processing, and highlight the potential of utilizing the emotion-modulated pupil response to facilitate the diagnosis of social cognitive disorders.