Abstract

Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth’s deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, Cyanobacterium aponinum 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.7 Å resolution structure of trimeric photosystem I from this high-light tolerant cyanobacterium. The structure shows a new conformation of the PsaL C-terminus that supports trimer formation of cyanobacterial photosystem Ipectroscopic analysis of this photosystem I revealed a decrease in far-red absorption, which is attributed to a decrease in the number of long wavelength chlorophylls. Using these findings, we constructed two chimeric PSIs in Synechocystis sp. PCC 6803 demonstrating how unique structural features in photosynthetic complexes can change spectroscopic properties, allowing organisms to thrive under different environmental stresses.

Data availability

The final model (PDBID 6VPV) and map (EMD-21320) were deposited in the Protein Databank and Electron Microscopy Database, respectively.C. aponinum genomic DNA was deposited in NCBI genebank under NCBI:txid2676140.

The following data sets were generated

Article and author information

Author details

  1. Zachary Dobson

    School of Molecular Sciences., Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Safa Ahad

    Department of Chemistry, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jackson Vanlandingham

    School of Molecular Sciences., Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hila Toporik

    School of Molecular Sciences., Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Natalie Vaughn

    School of Molecular Sciences., Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Vaughn

    School of Molecular Sciences., Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9357-094X
  7. Dewight Williams

    John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Reppert

    Department of Chemistry, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Petra Fromme

    John M. Cowley Center for High Resolution Electron Microscopy, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yuval Mazor

    School of Molecular Sciences., Arizona State University, Tempe, United States
    For correspondence
    yuval.mazor@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5072-0928

Funding

National Institute of Food and Agriculture (2020-67034-31742)

  • Zachary Dobson

Biodesign, Center of Applied Structural Discovery. (1)

  • Zachary Dobson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Kramer, Michigan State University, United States

Publication history

  1. Received: February 13, 2021
  2. Accepted: August 25, 2021
  3. Accepted Manuscript published: August 26, 2021 (version 1)
  4. Version of Record published: September 9, 2021 (version 2)

Copyright

© 2021, Dobson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,733
    Page views
  • 306
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary Dobson
  2. Safa Ahad
  3. Jackson Vanlandingham
  4. Hila Toporik
  5. Natalie Vaughn
  6. Michael Vaughn
  7. Dewight Williams
  8. Michael Reppert
  9. Petra Fromme
  10. Yuval Mazor
(2021)
The structure of photosystem I from a high-light tolerant Cyanobacteria
eLife 10:e67518.
https://doi.org/10.7554/eLife.67518

Further reading

    1. Plant Biology
    Josephine HR Maidment, Motoki Shimizu ... Mark J Banfield
    Research Article

    A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector’s host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.

    1. Cell Biology
    2. Plant Biology
    Han Nim Lee, Jenu Varghese Chacko ... Marisa S Otegui
    Research Article Updated

    The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy.