A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model

Abstract

Restoring damaged b-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study b-cells arising following destruction. We show that most new insulin cells differ from the original b-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to b-cell destruction is fast, efficient and age-independent. Bihormonal cells are transcriptionally close to a subset of d-cells that we identified in control islets and which are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins+ bihormonal cells following b-cell destruction. Our findings support the conclusion that sst1.1 d-cells possess a pro-b identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.

Data availability

RNA sequencing data have been deposited at NCBI GEO

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Claudio Andrés Carril Pardo

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  2. Laura Massoz

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  3. Marie A Dupont

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  4. David Bergemann

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  5. Jordane Bourdouxhe

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  6. Arnaud Lavergne

    GIGA-Genomics core facility, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  7. Estefania Tarifeño-Saldivia

    Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
    Competing interests
    No competing interests declared.
  8. Christian SM Helker

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  9. Didier YR Stainier true

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026
  10. Bernard Peers

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  11. Marianne M Voz

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cellslls, University of Liège, Liège, Belgium
    Competing interests
    No competing interests declared.
  12. Isabelle Manfroid

    Zebrafish Development and Disease Models laboratory, GIGA-Stem Cells, University of Liège, Liège, Belgium
    For correspondence
    Isabelle.Manfroid@uliege.be
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3445-3764

Funding

Chilean National Agency for Research and Development , Becas Chile (Scholarship,72170660)

  • Claudio Andrés Carril Pardo

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • Arnaud Lavergne

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • Laura Massoz

National Belgian Funds for Scientific Research (EoS Program,30826052)

  • Marie A Dupont

National Belgian Funds for Scientific Research (FRIA PhD fellowship)

  • David Bergemann

National Belgian Funds for Scientific Research (EoS Program,30826052)

  • Jordane Bourdouxhe

European Regional Development Fund (Biomed Hub Technology Support,2.2.1/996)

  • Arnaud Lavergne

National Belgian Funds for Scientific Research

  • Bernard Peers

National Belgian Funds for Scientific Research

  • Isabelle Manfroid

National Belgian Funds for Scientific Research

  • Marianne M Voz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in compliance with the European Union and Belgian law and with the approval of the ULiège Ethical Committee for experiments with laboratory animals (approval numbers 14-1662, 16-1872, 19-2083, 21-2353).

Copyright

© 2022, Carril Pardo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,941
    views
  • 338
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudio Andrés Carril Pardo
  2. Laura Massoz
  3. Marie A Dupont
  4. David Bergemann
  5. Jordane Bourdouxhe
  6. Arnaud Lavergne
  7. Estefania Tarifeño-Saldivia
  8. Christian SM Helker
  9. Didier YR Stainier true
  10. Bernard Peers
  11. Marianne M Voz
  12. Isabelle Manfroid
(2022)
A δ-cell subpopulation with pro-β cell identity contributes to efficient age-independent recovery in a zebrafish diabetes model
eLife 11:e67576.
https://doi.org/10.7554/eLife.67576

Share this article

https://doi.org/10.7554/eLife.67576

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.