Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity

  1. Shreya Saxena
  2. Abigail A Russo
  3. John Cunningham
  4. Mark M Churchland  Is a corresponding author
  1. University of Florida, United States
  2. Columbia University, United States

Abstract

Learned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling. Network solutions had a consistent form, which yielded quantitative and qualitative predictions. To evaluate predictions, we analyzed motor cortex activity recorded during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.

Data availability

Neural and EMG data have been deposited in figshare: https://figshare.com/s/b2a0557c239a1010d8ea

The following data sets were generated

Article and author information

Author details

  1. Shreya Saxena

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abigail A Russo

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John Cunningham

    Center for Theoretical Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark M Churchland

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    mc3502@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9123-6526

Funding

Grossman Center for the Statistics of Mind

  • Mark M Churchland

Alfred P. Sloan Foundation (FG-2015-65496)

  • Mark M Churchland

Simons Foundation (542963)

  • Mark M Churchland

NIH (1U19NS104649)

  • Mark M Churchland

NIH (5T32NS064929)

  • Mark M Churchland

Kavli Foundation

  • Mark M Churchland

Simons Foundation (325171)

  • Mark M Churchland

Swiss National Science Foundation (P2SKP2 178197)

  • Mark M Churchland

Swiss National Science Foundation (P400P2 186759)

  • Mark M Churchland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Andrew Pruszynski, Western University, Canada

Ethics

Animal experimentation: All protocols were in accord with the National Institutes of Health guidelines and approved by the Columbia University Institutional Animal Care and Use Committee. (Protocol number AC-AABE3550)

Version history

  1. Preprint posted: February 2, 2021 (view preprint)
  2. Received: February 17, 2021
  3. Accepted: May 26, 2022
  4. Accepted Manuscript published: May 27, 2022 (version 1)
  5. Version of Record published: June 14, 2022 (version 2)

Copyright

© 2022, Saxena et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,512
    views
  • 859
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shreya Saxena
  2. Abigail A Russo
  3. John Cunningham
  4. Mark M Churchland
(2022)
Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity
eLife 11:e67620.
https://doi.org/10.7554/eLife.67620

Share this article

https://doi.org/10.7554/eLife.67620

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.