Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing

  1. Debasmita Mondal
  2. Ameya G Prabhune
  3. Sriram Ramaswamy
  4. Prerna Sharma  Is a corresponding author
  1. Indian Institute of Science, India

Abstract

Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Separate source data files containing source data for each subfigure have been provided. A source code file containing the custom-written MATLAB codes has also been provided.

Article and author information

Author details

  1. Debasmita Mondal

    Department of Physics, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8265-6876
  2. Ameya G Prabhune

    Department of Physics, Indian Institute of Science, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sriram Ramaswamy

    Centre for Condensed Matter Theory, Deptartment of Physics, Indian Institute of Science, BENGALURU, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7726-8556
  4. Prerna Sharma

    Department of Physics, Indian Institute of Science, Bangalore, India
    For correspondence
    prerna@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4988-9560

Funding

The Wellcome Trust DBT India Alliance (IA/I/16/1/502356)

  • Prerna Sharma

Science and Engineering Research Board (J C Bose Fellowship)

  • Sriram Ramaswamy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: February 18, 2021
  2. Accepted: November 16, 2021
  3. Accepted Manuscript published: November 22, 2021 (version 1)
  4. Version of Record published: January 13, 2022 (version 2)
  5. Version of Record updated: January 17, 2022 (version 3)

Copyright

© 2021, Mondal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,122
    Page views
  • 171
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debasmita Mondal
  2. Ameya G Prabhune
  3. Sriram Ramaswamy
  4. Prerna Sharma
(2021)
Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing
eLife 10:e67663.
https://doi.org/10.7554/eLife.67663

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Kishore Hari, Varun Ullanat ... Mohit Kumar Jolly
    Research Advance Updated

    Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two ‘teams’ of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these ‘teams’ exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial–mesenchymal plasticity comprised of two ‘teams’ of players – one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These ‘teams’ are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose ‘teams’ of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.

    1. Physics of Living Systems
    Samuel A Bentley, Hannah Laeverenz-Schlogelhofer ... Kirsty Y Wan
    Research Article

    The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.