Cortical Magnification in Human Visual Cortex Parallels Task Performance around the Visual Field

  1. Noah C Benson  Is a corresponding author
  2. Eline R Kupers
  3. Antoine Babot
  4. Marisa Carrasco
  5. Jonathan Winawer
  1. University of Washington, United States
  2. New York University, United States
  3. Spinoza Centre for Neuroimaging, Netherlands

Abstract

Human vision has striking radial asymmetries, with performance on many tasks varying sharply with stimulus polar angle. Performance is generally better on the horizontal than vertical meridian, and on the lower than upper vertical meridian, and these asymmetries decrease gradually with deviation from the vertical meridian. Here we report cortical magnification at a fine angular resolution around the visual field. This precision enables comparisons between cortical magnification and behavior, between cortical magnification and retinal cell densities, and between cortical magnification in twin pairs. We show that cortical magnification in human primary visual cortex, measured in 163 subjects, varies substantially around the visual field, with a pattern similar to behavior. These radial asymmetries in cortex are larger than those found in the retina, and they are correlated between monozygotic twin pairs. These findings indicate a tight link between cortical topography and behavior, and suggest that visual field asymmetries are partly heritable.

Data availability

All source code and data have been permanently archived on the Open Science Framework with DOI 10.17605/OSF.IO/5GPRZ.

The following data sets were generated
    1. Benson NC
    2. Kupers ER
    3. Barbot A
    4. Carrasco M
    5. Winawer J
    (2020) Visual Performance Fields
    Open Science Framework, doi:10.17605/OSF.IO/5GPRZ.
The following previously published data sets were used
    1. Benson NC et al.
    (2018) The Human Connectome Project 7 Tesla Retinotopy Dataset
    Open Science Framework, doi:10.17605/OSF.IO/BW9EC.

Article and author information

Author details

  1. Noah C Benson

    eScience Institute, University of Washington, Seattle, United States
    For correspondence
    nben@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2365-8265
  2. Eline R Kupers

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4972-5307
  3. Antoine Babot

    Netherlands Institute for Neuroscience, Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Marisa Carrasco

    Department of Psychology, New York University, New York, United States
    Competing interests
    Marisa Carrasco, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1002-9056
  5. Jonathan Winawer

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7475-5586

Funding

National Eye Institute (RO1-EY027401)

  • Marisa Carrasco
  • Jonathan Winawer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ming Meng, South China Normal University, China

Ethics

Human subjects: No human subjects data were collected for this paper. All data used in this paper were obtained from previous publications and publicly-available datasets in which subjects provided informed consent. Primarily, analyses were performed using data from the HCP (D. C. Van Essen et al. 2012, Neuroimage 62:2222-2231), including data from the HCP that were reanalyzed by subsequent studies (Benson et al. 2018, J Vis 18:23; Benson et al. 2021, bioRxiv 10.1101/2020.12.30.424856). Additionally, Figures 1 and 3 includes data replotted from previous publications by the authors (Carrasco et al. 2001, Spat Vis 15:61-75; Abrams et al. 2012, Vision Res 52:70-78; Barbot et al. 2021, J Vis 21:2), and Figure 5 includes publicly available data from Curcio et al. (1990, J Comp Neurol 292:497-523). In all cases, informed consent was obtained from subjects in the original studies, and all applicable use policies were followed in the use of the data. No personal health information is included in this paper or in the associated dataset or code.

Version history

  1. Preprint posted: August 26, 2020 (view preprint)
  2. Received: February 19, 2021
  3. Accepted: August 2, 2021
  4. Accepted Manuscript published: August 3, 2021 (version 1)
  5. Version of Record published: August 20, 2021 (version 2)

Copyright

© 2021, Benson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,444
    views
  • 278
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah C Benson
  2. Eline R Kupers
  3. Antoine Babot
  4. Marisa Carrasco
  5. Jonathan Winawer
(2021)
Cortical Magnification in Human Visual Cortex Parallels Task Performance around the Visual Field
eLife 10:e67685.
https://doi.org/10.7554/eLife.67685

Share this article

https://doi.org/10.7554/eLife.67685

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.