Cortical Magnification in Human Visual Cortex Parallels Task Performance around the Visual Field

  1. Noah C Benson  Is a corresponding author
  2. Eline R Kupers
  3. Antoine Babot
  4. Marisa Carrasco
  5. Jonathan Winawer
  1. University of Washington, United States
  2. New York University, United States
  3. Spinoza Centre for Neuroimaging, Netherlands

Abstract

Human vision has striking radial asymmetries, with performance on many tasks varying sharply with stimulus polar angle. Performance is generally better on the horizontal than vertical meridian, and on the lower than upper vertical meridian, and these asymmetries decrease gradually with deviation from the vertical meridian. Here we report cortical magnification at a fine angular resolution around the visual field. This precision enables comparisons between cortical magnification and behavior, between cortical magnification and retinal cell densities, and between cortical magnification in twin pairs. We show that cortical magnification in human primary visual cortex, measured in 163 subjects, varies substantially around the visual field, with a pattern similar to behavior. These radial asymmetries in cortex are larger than those found in the retina, and they are correlated between monozygotic twin pairs. These findings indicate a tight link between cortical topography and behavior, and suggest that visual field asymmetries are partly heritable.

Data availability

All source code and data have been permanently archived on the Open Science Framework with DOI 10.17605/OSF.IO/5GPRZ.

The following data sets were generated
    1. Benson NC
    2. Kupers ER
    3. Barbot A
    4. Carrasco M
    5. Winawer J
    (2020) Visual Performance Fields
    Open Science Framework, doi:10.17605/OSF.IO/5GPRZ.
The following previously published data sets were used
    1. Benson NC et al.
    (2018) The Human Connectome Project 7 Tesla Retinotopy Dataset
    Open Science Framework, doi:10.17605/OSF.IO/BW9EC.

Article and author information

Author details

  1. Noah C Benson

    eScience Institute, University of Washington, Seattle, United States
    For correspondence
    nben@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2365-8265
  2. Eline R Kupers

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4972-5307
  3. Antoine Babot

    Netherlands Institute for Neuroscience, Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  4. Marisa Carrasco

    Department of Psychology, New York University, New York, United States
    Competing interests
    Marisa Carrasco, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1002-9056
  5. Jonathan Winawer

    Department of Psychology, New York University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7475-5586

Funding

National Eye Institute (RO1-EY027401)

  • Marisa Carrasco
  • Jonathan Winawer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ming Meng, South China Normal University, China

Ethics

Human subjects: No human subjects data were collected for this paper. All data used in this paper were obtained from previous publications and publicly-available datasets in which subjects provided informed consent. Primarily, analyses were performed using data from the HCP (D. C. Van Essen et al. 2012, Neuroimage 62:2222-2231), including data from the HCP that were reanalyzed by subsequent studies (Benson et al. 2018, J Vis 18:23; Benson et al. 2021, bioRxiv 10.1101/2020.12.30.424856). Additionally, Figures 1 and 3 includes data replotted from previous publications by the authors (Carrasco et al. 2001, Spat Vis 15:61-75; Abrams et al. 2012, Vision Res 52:70-78; Barbot et al. 2021, J Vis 21:2), and Figure 5 includes publicly available data from Curcio et al. (1990, J Comp Neurol 292:497-523). In all cases, informed consent was obtained from subjects in the original studies, and all applicable use policies were followed in the use of the data. No personal health information is included in this paper or in the associated dataset or code.

Version history

  1. Preprint posted: August 26, 2020 (view preprint)
  2. Received: February 19, 2021
  3. Accepted: August 2, 2021
  4. Accepted Manuscript published: August 3, 2021 (version 1)
  5. Version of Record published: August 20, 2021 (version 2)

Copyright

© 2021, Benson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,348
    Page views
  • 268
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noah C Benson
  2. Eline R Kupers
  3. Antoine Babot
  4. Marisa Carrasco
  5. Jonathan Winawer
(2021)
Cortical Magnification in Human Visual Cortex Parallels Task Performance around the Visual Field
eLife 10:e67685.
https://doi.org/10.7554/eLife.67685

Share this article

https://doi.org/10.7554/eLife.67685

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.