A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk

  1. Jessamyn I Perlmutter  Is a corresponding author
  2. Jane E Meyers
  3. Seth R Bordenstein  Is a corresponding author
  1. University of Kansas, United States
  2. Vanderbilt University, United States

Abstract

Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally-transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is recapitulated to degrees by transgenic expression of the WO-mediated killing (wmk) gene. Here, we characterize the genotype-phenotype landscape of wmk-induced male killing in D. melanogaster using transgenic expression. While phylogenetically distant wmk homologs induce no sex-ratio bias, closely-related homologs exhibit complex phenotypes spanning no death, male death, or death of all hosts. We demonstrate that alternative start codons, synonymous codons, and notably a single synonymous nucleotide in wmk can ablate killing. These findings reveal previously unrecognized features of transgenic wmk-induced killing and establish new hypotheses for the impacts of post-transcriptional processes in male killing variation. We conclude that synonymous sequence changes are not necessarily silent in nested endosymbiotic interactions with life-or-death consequences.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3-6.

Article and author information

Author details

  1. Jessamyn I Perlmutter

    Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    jessamyn.perlmutter@ku.edu
    Competing interests
    Jessamyn I Perlmutter, J. Perlmutter and S. Bordenstein are listed as authors on a patent related to the use of wmk in vector control. US Patent 20210000092 16/982708.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9789-4674
  2. Jane E Meyers

    Biological Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  3. Seth R Bordenstein

    Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States
    For correspondence
    s.bordenstein@vanderbilt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7346-0954

Funding

National Institutes of Health (R21 AI133522)

  • Seth R Bordenstein

National Institutes of Health (F31 AI143152)

  • Jessamyn I Perlmutter

Vanderbilt Microbiome Initiative (VMI General Funds)

  • Seth R Bordenstein

National Institutes of Health (P20 GM103418)

  • Jessamyn I Perlmutter

National Science Foundation (DBI 2109772)

  • Jessamyn I Perlmutter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Perlmutter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,114
    views
  • 147
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessamyn I Perlmutter
  2. Jane E Meyers
  3. Seth R Bordenstein
(2021)
A single synonymous nucleotide change impacts the male-killing phenotype of prophage WO gene wmk
eLife 10:e67686.
https://doi.org/10.7554/eLife.67686

Share this article

https://doi.org/10.7554/eLife.67686

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.