E2F/Dp inactivation in fat body cells triggers systemic metabolic changes

  1. Maria Paula Zappia
  2. Ana Guarner
  3. Nadia Kellie-Smith
  4. Alice Rogers
  5. Robert Morris
  6. Brandon Nicolay
  7. Myriam Boukhali
  8. Wilhelm Haas
  9. Nicholas Dyson
  10. Maxim V Frolov  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Massachusetts General Hospital, United States
  3. Massachusetts General Hospital CancerCenter and Harvard Medical School, United States

Abstract

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently, rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.

Data availability

All mass spectrometer RAW files for quantitative proteomics analysis can be accessed through the MassIVE data repository (massive.ucsd.edu) under the accession number MSV000086854

The following data sets were generated

Article and author information

Author details

  1. Maria Paula Zappia

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ana Guarner

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadia Kellie-Smith

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alice Rogers

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Morris

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon Nicolay

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Myriam Boukhali

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wilhelm Haas

    Massachusetts General Hospital CancerCenter and Harvard Medical School, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas Dyson

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Maxim V Frolov

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    For correspondence
    mfrolov@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3953-3739

Funding

National Institute of General Medical Sciences (R35GM131707)

  • Maxim V Frolov

National Institute of General Medical Sciences (R01GM117413)

  • Nicholas Dyson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: February 22, 2021
  2. Preprint posted: April 9, 2021 (view preprint)
  3. Accepted: July 11, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Version of Record published: July 22, 2021 (version 2)

Copyright

© 2021, Zappia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,636
    views
  • 207
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Paula Zappia
  2. Ana Guarner
  3. Nadia Kellie-Smith
  4. Alice Rogers
  5. Robert Morris
  6. Brandon Nicolay
  7. Myriam Boukhali
  8. Wilhelm Haas
  9. Nicholas Dyson
  10. Maxim V Frolov
(2021)
E2F/Dp inactivation in fat body cells triggers systemic metabolic changes
eLife 10:e67753.
https://doi.org/10.7554/eLife.67753

Share this article

https://doi.org/10.7554/eLife.67753

Further reading

    1. Cancer Biology
    Chenxi Gao, Huaibin Ge ... Jing Hu
    Research Article

    BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a ‘just-right’ level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E’s oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a ‘just-right’ ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.

    1. Cancer Biology
    2. Computational and Systems Biology
    Marie Breeur, George Stepaniants ... Vivian Viallon
    Research Article

    Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.