E2F/Dp inactivation in fat body cells triggers systemic metabolic changes

  1. Maria Paula Zappia
  2. Ana Guarner
  3. Nadia Kellie-Smith
  4. Alice Rogers
  5. Robert Morris
  6. Brandon Nicolay
  7. Myriam Boukhali
  8. Wilhelm Haas
  9. Nicholas Dyson
  10. Maxim V Frolov  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. Massachusetts General Hospital, United States
  3. Massachusetts General Hospital CancerCenter and Harvard Medical School, United States

Abstract

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently, rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.

Data availability

All mass spectrometer RAW files for quantitative proteomics analysis can be accessed through the MassIVE data repository (massive.ucsd.edu) under the accession number MSV000086854

The following data sets were generated

Article and author information

Author details

  1. Maria Paula Zappia

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ana Guarner

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadia Kellie-Smith

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alice Rogers

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Morris

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon Nicolay

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Myriam Boukhali

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wilhelm Haas

    Massachusetts General Hospital CancerCenter and Harvard Medical School, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas Dyson

    Cancer Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Maxim V Frolov

    Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, United States
    For correspondence
    mfrolov@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3953-3739

Funding

National Institute of General Medical Sciences (R35GM131707)

  • Maxim V Frolov

National Institute of General Medical Sciences (R01GM117413)

  • Nicholas Dyson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: February 22, 2021
  2. Preprint posted: April 9, 2021 (view preprint)
  3. Accepted: July 11, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Version of Record published: July 22, 2021 (version 2)

Copyright

© 2021, Zappia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,584
    Page views
  • 206
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Paula Zappia
  2. Ana Guarner
  3. Nadia Kellie-Smith
  4. Alice Rogers
  5. Robert Morris
  6. Brandon Nicolay
  7. Myriam Boukhali
  8. Wilhelm Haas
  9. Nicholas Dyson
  10. Maxim V Frolov
(2021)
E2F/Dp inactivation in fat body cells triggers systemic metabolic changes
eLife 10:e67753.
https://doi.org/10.7554/eLife.67753

Share this article

https://doi.org/10.7554/eLife.67753

Further reading

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

    1. Cancer Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Paladini, Annalena Maier ... Stephan Grzesiek
    Research Article

    Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl’s activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.