Endothelial Pannexin 1-TRPV4 channel signaling lowers pulmonary arterial pressure in mice

  1. Zdravka Daneva
  2. Matteo Ottolini
  3. Yen Lin Chen
  4. Eliska Klimentova
  5. Maniselvan Kuppusamy
  6. Soham A Shah
  7. Richard D Minshall
  8. Cheikh I Seye
  9. Victor E Laubach
  10. Brant E Isakson
  11. Swapnil K Sonkusare  Is a corresponding author
  1. University of Virginia, United States
  2. University of Illinois, United States
  3. University of Missouri, United States

Abstract

Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates of endothelial TRPV4 channels. We hypothesized that endothelial Panx1-ATP-TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Ca (PKCa), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCa, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1-P2Y2R-TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.

Data availability

All data generated or analyzed during this study are included in the manuscript. Individual numeric values are shown in the scatterplots for each dataset. An excel sheet with source data for Figure 1J has been provided.

Article and author information

Author details

  1. Zdravka Daneva

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matteo Ottolini

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yen Lin Chen

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eliska Klimentova

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maniselvan Kuppusamy

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Soham A Shah

    Biomedical Engineering, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard D Minshall

    Pharmacology, University of Illinois, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheikh I Seye

    Biochemistry, University of Missouri, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Victor E Laubach

    Surgery, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Brant E Isakson

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Swapnil K Sonkusare

    Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
    For correspondence
    swapnil.sonkusare@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9587-9342

Funding

National Institutes of Health (HL146914)

  • Swapnil K Sonkusare

National Institutes of Health (HL142808)

  • Swapnil K Sonkusare

National Institutes of Health (HL157407)

  • Victor E Laubach
  • Swapnil K Sonkusare

National Institutes of Health (P01HL120840)

  • Brant E Isakson

National Institutes of Health (HL137112)

  • Brant E Isakson

National Institutes of Health (R01HL133293)

  • Victor E Laubach

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Ethics

Animal experimentation: All animal protocols were approved by the University of Virginia Animal Care and Use Committee (protocols 4100 and 4120). This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. For surgical procedures, every effort was made to minimize suffering.

Version history

  1. Received: February 22, 2021
  2. Preprint posted: March 9, 2021 (view preprint)
  3. Accepted: September 6, 2021
  4. Accepted Manuscript published: September 7, 2021 (version 1)
  5. Version of Record published: September 17, 2021 (version 2)

Copyright

© 2021, Daneva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,514
    views
  • 205
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zdravka Daneva
  2. Matteo Ottolini
  3. Yen Lin Chen
  4. Eliska Klimentova
  5. Maniselvan Kuppusamy
  6. Soham A Shah
  7. Richard D Minshall
  8. Cheikh I Seye
  9. Victor E Laubach
  10. Brant E Isakson
  11. Swapnil K Sonkusare
(2021)
Endothelial Pannexin 1-TRPV4 channel signaling lowers pulmonary arterial pressure in mice
eLife 10:e67777.
https://doi.org/10.7554/eLife.67777

Share this article

https://doi.org/10.7554/eLife.67777

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.