Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors

  1. Moirangthem Kiran Singh
  2. Parisa Zangoui
  3. Yuki Yamanaka
  4. Linda J Kenney  Is a corresponding author
  1. University of Texas Medical Branch, United States
  2. Nippon Dental University School of Life Dentistry at Tokyo, Japan

Abstract

Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data of Figure 4A-B, Figure 2-figure supplement 5, Figure 3-figure supplement 1, Figure 3-figure supplement 4, Figure 3-figure supplement 5, Figure 4-figure supplement 1 are included.

Article and author information

Author details

  1. Moirangthem Kiran Singh

    Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Parisa Zangoui

    Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuki Yamanaka

    School of Life Dentistry, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Linda J Kenney

    Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
    For correspondence
    likenney@utmb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8658-0717

Funding

Ministry of Education, Singapore (MOE2018-T2-1-038)

  • Linda J Kenney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Singh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,287
    views
  • 361
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moirangthem Kiran Singh
  2. Parisa Zangoui
  3. Yuki Yamanaka
  4. Linda J Kenney
(2021)
Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors
eLife 10:e67789.
https://doi.org/10.7554/eLife.67789

Share this article

https://doi.org/10.7554/eLife.67789

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Microbiology and Infectious Disease
    Caihong Hu
    Insight

    Certain strains of a bacterium found in the gut of some animals, Lactobacillus plantarum, are able to counter hyperuricemia, a condition caused by high levels of uric acid in the blood.