Abstract

Integral outer membrane proteins (OMPs) are crucial for the maintenance of the proteobacterial envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OM proteins (OMPs) activates the sigmaE (σE) transcriptional response. σE upregulates OMP-biogenesis factors, including the b-barrel assembly machinery (BAM) that catalyzes OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood OM lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating to OM-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the OM, thus supporting OMP biogenesis and OM integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.

Data availability

All data generated and analysed during this study are available in the manuscript and supporting files. Source data related to the CRISPRi screen are provided in the supporting files.

Article and author information

Author details

  1. David Ranava

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5841-7699
  2. Yiying Yang

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis Orenday-Tapia

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1134-0823
  4. François Rousset

    Microbiology Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Turlan

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Violette Morales

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Lun Cui

    Microbiology Department, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Cyril Moulin

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carine Froment

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Gladys Munoz

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Jérôme Rech

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Julien Marcoux

    Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7321-7436
  13. Anne Caumont-Sarcos

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Cécile Albenne

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  15. David Bikard

    Synthetic Biology Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5729-1211
  16. Raffaele Ieva

    Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France
    For correspondence
    raffaele.ieva@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3405-0650

Funding

Centre National de la Recherche Scientifique (ATIP-Avenir)

  • Raffaele Ieva

Agence Nationale de la Recherche (ANR-10-INBS-08)

  • Julien Marcoux

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • David Bikard

Fondation pour la Recherche Médicale (PostDoc Fellowship)

  • David Ranava

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ranava et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,645
    views
  • 410
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Ranava
  2. Yiying Yang
  3. Luis Orenday-Tapia
  4. François Rousset
  5. Catherine Turlan
  6. Violette Morales
  7. Lun Cui
  8. Cyril Moulin
  9. Carine Froment
  10. Gladys Munoz
  11. Jérôme Rech
  12. Julien Marcoux
  13. Anne Caumont-Sarcos
  14. Cécile Albenne
  15. David Bikard
  16. Raffaele Ieva
(2021)
Lipoprotein DolP supports proper folding of BamA in the bacterial outer membrane, promoting fitness upon envelope stress
eLife 10:e67817.
https://doi.org/10.7554/eLife.67817

Share this article

https://doi.org/10.7554/eLife.67817

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.