Targeting an anchored phosphatase-deacetylase unit restores renal ciliary homeostasis

  1. Janani Gopalan
  2. Mitchell H Omar
  3. Ankita Roy
  4. Nelly M Cruz
  5. Jerome Falcone
  6. Kiana N Jones
  7. Katherine A Forbush
  8. Jonathan Himmelfarb
  9. Benjamin S Freedman
  10. John D Scott  Is a corresponding author
  1. University of Washington, United States
  2. University of Washington Medical Center, United States

Abstract

Pathophysiological defects in water homeostasis can lead to renal failure. Likewise, common genetic disorders associated with abnormal cytoskeletal dynamics in the kidney collecting ducts and perturbed calcium and cAMP signaling in the ciliary compartment contribute to chronic kidney failure. We show that collecting ducts in mice lacking the A-Kinase anchoring protein AKAP220 exhibit enhanced development of primary cilia. Mechanistic studies reveal that AKAP220-associated protein phosphatase 1 (PP1) mediates this phenotype by promoting changes in the stability of histone deacetylase 6 (HDAC6) with concomitant defects in actin dynamics. This proceeds through a previously unrecognized adaptor function for PP1 as all ciliogenesis and cytoskeletal phenotypes are recapitulated in mIMCD3 knock-in cells expressing a phosphatase-targeting defective AKAP220-ΔPP1 mutant. Pharmacological blocking of local HDAC6 activity alters cilia development and reduces cystogenesis in kidney-on-chip and organoid models. These findings identify the AKAP220-PPI-HDAC6 pathway as a key effector in primary cilia development.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Janani Gopalan

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mitchell H Omar

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ankita Roy

    senior scientist, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nelly M Cruz

    Nephrology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jerome Falcone

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kiana N Jones

    Nephrology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katherine A Forbush

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4825-4766
  8. Jonathan Himmelfarb

    Nephrology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Benjamin S Freedman

    Nephrology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. John D Scott

    Department of Pharmacology, University of Washington Medical Center, Seattle, United States
    For correspondence
    scottjdw@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0367-8146

Funding

National Institutes of Health (5R01DK105542)

  • John D Scott

National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK119192-01)

  • John D Scott

National Institutes of Health (T32 GM007270)

  • Janani Gopalan

National Institute of Diabetes and Digestive and Kidney Diseases (F32DK121415)

  • Mitchell H Omar

Lara Nowak Macklin Research Fund

  • Mitchell H Omar

National Institutes of Health (UG3TR002158)

  • Jonathan Himmelfarb

National Institutes of Health (R01DK117914)

  • Benjamin S Freedman

The funding information is provided above. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy F Reiter, University of California, San Francisco, United States

Version history

  1. Preprint posted: February 24, 2021 (view preprint)
  2. Received: February 24, 2021
  3. Accepted: July 11, 2021
  4. Accepted Manuscript published: July 12, 2021 (version 1)
  5. Version of Record published: July 20, 2021 (version 2)
  6. Version of Record updated: August 12, 2021 (version 3)

Copyright

© 2021, Gopalan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 934
    views
  • 123
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janani Gopalan
  2. Mitchell H Omar
  3. Ankita Roy
  4. Nelly M Cruz
  5. Jerome Falcone
  6. Kiana N Jones
  7. Katherine A Forbush
  8. Jonathan Himmelfarb
  9. Benjamin S Freedman
  10. John D Scott
(2021)
Targeting an anchored phosphatase-deacetylase unit restores renal ciliary homeostasis
eLife 10:e67828.
https://doi.org/10.7554/eLife.67828

Share this article

https://doi.org/10.7554/eLife.67828

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.