Tissue specific targeting of DNA nanodevices in a multicellular living organism

  1. Kasturi Chakraborty
  2. Palapuravan Anees
  3. Sunaina Surana
  4. Simona Martin
  5. Jihad Aburas
  6. Sandrine Moutel
  7. Franck Perez
  8. Sandhya P Koushika
  9. Paschalis Kratsios  Is a corresponding author
  10. Yamuna Krishnan  Is a corresponding author
  1. University of Chicago, United States
  2. University College London, United Kingdom
  3. Institut Curie, France
  4. TATA Institute of Fundamental Research, India

Abstract

Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell-types in vivo. Here we show that by exploiting either endogenous or synthetic receptor-ligand interactions and by leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in C. elegans, with sub-cellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kasturi Chakraborty

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0635-9028
  2. Palapuravan Anees

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Sunaina Surana

    Department of Neuromuscular Diseases, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7017-3105
  4. Simona Martin

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Jihad Aburas

    Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Sandrine Moutel

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  7. Franck Perez

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-9401
  8. Sandhya P Koushika

    Biological Sciences, TATA Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1742-7356
  9. Paschalis Kratsios

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    pkratsios@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1363-9271
  10. Yamuna Krishnan

    Chemistry, University of Chicago, Chicago, United States
    For correspondence
    yamuna@uchicago.edu
    Competing interests
    Yamuna Krishnan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5282-8852

Funding

Air Force Office of Scientific Research (FA9550-19-0003)

  • Yamuna Krishnan

National Institute of Neurological Disorders and Stroke (1R01NS112139-01A1)

  • Yamuna Krishnan

Ono Pharma Foundation

  • Yamuna Krishnan

Whitehall Foundation

  • Paschalis Kratsios

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chakraborty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,466
    views
  • 367
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kasturi Chakraborty
  2. Palapuravan Anees
  3. Sunaina Surana
  4. Simona Martin
  5. Jihad Aburas
  6. Sandrine Moutel
  7. Franck Perez
  8. Sandhya P Koushika
  9. Paschalis Kratsios
  10. Yamuna Krishnan
(2021)
Tissue specific targeting of DNA nanodevices in a multicellular living organism
eLife 10:e67830.
https://doi.org/10.7554/eLife.67830

Share this article

https://doi.org/10.7554/eLife.67830

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    Bikash Adhikari, Katharina Schneider ... Elmar Wolf
    Research Article

    The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.