Tissue specific targeting of DNA nanodevices in a multicellular living organism

  1. Kasturi Chakraborty
  2. Palapuravan Anees
  3. Sunaina Surana
  4. Simona Martin
  5. Jihad Aburas
  6. Sandrine Moutel
  7. Franck Perez
  8. Sandhya P Koushika
  9. Paschalis Kratsios  Is a corresponding author
  10. Yamuna Krishnan  Is a corresponding author
  1. University of Chicago, United States
  2. University College London, United Kingdom
  3. Institut Curie, France
  4. TATA Institute of Fundamental Research, India

Abstract

Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell-types in vivo. Here we show that by exploiting either endogenous or synthetic receptor-ligand interactions and by leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in C. elegans, with sub-cellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kasturi Chakraborty

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0635-9028
  2. Palapuravan Anees

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Sunaina Surana

    Department of Neuromuscular Diseases, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7017-3105
  4. Simona Martin

    Chemistry, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Jihad Aburas

    Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Sandrine Moutel

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  7. Franck Perez

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-9401
  8. Sandhya P Koushika

    Biological Sciences, TATA Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1742-7356
  9. Paschalis Kratsios

    Department of Neurobiology, University of Chicago, Chicago, United States
    For correspondence
    pkratsios@uchicago.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1363-9271
  10. Yamuna Krishnan

    Chemistry, University of Chicago, Chicago, United States
    For correspondence
    yamuna@uchicago.edu
    Competing interests
    Yamuna Krishnan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5282-8852

Funding

Air Force Office of Scientific Research (FA9550-19-0003)

  • Yamuna Krishnan

National Institute of Neurological Disorders and Stroke (1R01NS112139-01A1)

  • Yamuna Krishnan

Ono Pharma Foundation

  • Yamuna Krishnan

Whitehall Foundation

  • Paschalis Kratsios

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chakraborty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,508
    views
  • 369
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kasturi Chakraborty
  2. Palapuravan Anees
  3. Sunaina Surana
  4. Simona Martin
  5. Jihad Aburas
  6. Sandrine Moutel
  7. Franck Perez
  8. Sandhya P Koushika
  9. Paschalis Kratsios
  10. Yamuna Krishnan
(2021)
Tissue specific targeting of DNA nanodevices in a multicellular living organism
eLife 10:e67830.
https://doi.org/10.7554/eLife.67830

Share this article

https://doi.org/10.7554/eLife.67830

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.