Distinct Synaptic Transfer Functions in Same-Type Photoreceptors

  1. Cornelius Schroeder  Is a corresponding author
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden  Is a corresponding author
  1. University of Tuebingen, Germany, Germany
  2. University of Tübingen, Germany
  3. University of Sussex, UK, United Kingdom
  4. University of Sussex, United Kingdom

Abstract

Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous “dual-colour” 2-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single neuron types there exist highly specialized mechanisms which are advantageous for the encoding of different visual features.

Data availability

Data is deposited on Data-dryad under Schroder, Cornelius et al. (2021), Distinct Synaptic Transfer Functions in Same-Type Photoreceptors, Dryad, Dataset, https://doi.org/10.5061/dryad.7wm37pvt0.

Article and author information

Author details

  1. Cornelius Schroeder

    Institute for Ophthalmic Research, University of Tuebingen, Germany, Tuebingen, Germany
    For correspondence
    c.schroeder@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Oesterle

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8919-1445
  3. Philipp Berens

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-4727
  4. Takeshi Yoshimatsu

    School of Life Sciences, University of Sussex, UK, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tom Baden

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    t.baden@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-4210

Funding

Wellcome Trust (220277/Z/20/Z)

  • Tom Baden

European Research Council (677687)

  • Tom Baden

BBSRC (BB/R014817/1)

  • Tom Baden

German Ministry for Education and Research (01GQ1601,01IS18052C,01IS18039A)

  • Philipp Berens

German Research Foundation (BE5601/4-1,EXC 2064 - 390727645)

  • Philipp Berens

Leverhulme Trust (PLP-2017-005)

  • Tom Baden

Lister Institute for Preventive Medicine (Fellowship)

  • Tom Baden

Marie Curie Sklodowska Actions individual fellowship (748716)

  • Takeshi Yoshimatsu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the UK Animals (Scientific Procedures) act 1986 and approved by the animal welfare committee of the University of Sussex. All licensed procedures (in vivo 2-photon imaging of live zebrafish larvae) are covered by the Project License PPL PE08A2AD2 (to TB).

Copyright

© 2021, Schroeder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 857
    views
  • 133
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cornelius Schroeder
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden
(2021)
Distinct Synaptic Transfer Functions in Same-Type Photoreceptors
eLife 10:e67851.
https://doi.org/10.7554/eLife.67851

Share this article

https://doi.org/10.7554/eLife.67851

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Neuroscience
    Mengqiao Cui, Xiaoyuan Pan ... Jun-Li Cao
    Research Article

    Memory impairment in chronic pain patients is substantial and common, and few therapeutic strategies are available. Chronic pain-related memory impairment has susceptible and unsusceptible features. Therefore, exploring the underlying mechanisms of its vulnerability is essential for developing effective treatments. Here, combining two spatial memory tests (Y-maze test and Morris water maze), we segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations in a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve. RNA-Seq analysis and gain/loss-of-function study revealed that S1P/S1PR1 signaling is a determinant for vulnerability to chronic pain-related memory impairment. Knockdown of the S1PR1 in the dentate gyrus (DG) promoted a susceptible phenotype and led to structural plasticity changes of reduced excitatory synapse formation and abnormal spine morphology as observed in susceptible mice, while overexpression of the S1PR1 and pharmacological administration of S1PR1 agonist in the DG promoted an unsusceptible phenotype and prevented the occurrence of memory impairment, and rescued the morphological abnormality. Finally, the Gene Ontology (GO) enrichment analysis and biochemical evidence indicated that downregulation of S1PR1 in susceptible mice may impair DG structural plasticity via interaction with actin cytoskeleton rearrangement-related signaling pathways including Itga2 and its downstream Rac1/Cdc42 signaling and Arp2/3 cascade. These results reveal a novel mechanism and provide a promising preventive and therapeutic molecular target for vulnerability to chronic pain-related memory impairment.