Distinct Synaptic Transfer Functions in Same-Type Photoreceptors

  1. Cornelius Schroeder  Is a corresponding author
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden  Is a corresponding author
  1. University of Tuebingen, Germany, Germany
  2. University of Tübingen, Germany
  3. University of Sussex, UK, United Kingdom
  4. University of Sussex, United Kingdom

Abstract

Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous “dual-colour” 2-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single neuron types there exist highly specialized mechanisms which are advantageous for the encoding of different visual features.

Data availability

Data is deposited on Data-dryad under Schroder, Cornelius et al. (2021), Distinct Synaptic Transfer Functions in Same-Type Photoreceptors, Dryad, Dataset, https://doi.org/10.5061/dryad.7wm37pvt0.

Article and author information

Author details

  1. Cornelius Schroeder

    Institute for Ophthalmic Research, University of Tuebingen, Germany, Tuebingen, Germany
    For correspondence
    c.schroeder@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Oesterle

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8919-1445
  3. Philipp Berens

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-4727
  4. Takeshi Yoshimatsu

    School of Life Sciences, University of Sussex, UK, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tom Baden

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    t.baden@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-4210

Funding

Wellcome Trust (220277/Z/20/Z)

  • Tom Baden

European Research Council (677687)

  • Tom Baden

BBSRC (BB/R014817/1)

  • Tom Baden

German Ministry for Education and Research (01GQ1601,01IS18052C,01IS18039A)

  • Philipp Berens

German Research Foundation (BE5601/4-1,EXC 2064 - 390727645)

  • Philipp Berens

Leverhulme Trust (PLP-2017-005)

  • Tom Baden

Lister Institute for Preventive Medicine (Fellowship)

  • Tom Baden

Marie Curie Sklodowska Actions individual fellowship (748716)

  • Takeshi Yoshimatsu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the UK Animals (Scientific Procedures) act 1986 and approved by the animal welfare committee of the University of Sussex. All licensed procedures (in vivo 2-photon imaging of live zebrafish larvae) are covered by the Project License PPL PE08A2AD2 (to TB).

Copyright

© 2021, Schroeder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 853
    views
  • 133
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cornelius Schroeder
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden
(2021)
Distinct Synaptic Transfer Functions in Same-Type Photoreceptors
eLife 10:e67851.
https://doi.org/10.7554/eLife.67851

Share this article

https://doi.org/10.7554/eLife.67851

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.