Distinct synaptic transfer functions in same-type photoreceptors

  1. Cornelius Schroeder  Is a corresponding author
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden  Is a corresponding author
  1. University of Tuebingen, Germany
  2. University of Tübingen, Germany
  3. University of Sussex, United Kingdom

Abstract

Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous 'dual-colour' 2-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single neuron types there exist highly specialized mechanisms which are advantageous for the encoding of different visual features.

Data availability

Data is deposited on Data-dryad under Schroder, Cornelius et al. (2021), Distinct Synaptic Transfer Functions in Same-Type Photoreceptors, Dryad, Dataset, https://doi.org/10.5061/dryad.7wm37pvt0.

The following data sets were generated

Article and author information

Author details

  1. Cornelius Schroeder

    Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
    For correspondence
    c.schroeder@uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Jonathan Oesterle

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8919-1445
  3. Philipp Berens

    Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-4727
  4. Takeshi Yoshimatsu

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Tom Baden

    School of Life Sciences, University of Sussex, Brighton, United Kingdom
    For correspondence
    t.baden@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2808-4210

Funding

Wellcome Trust (220277/Z/20/Z)

  • Tom Baden

European Research Council (677687)

  • Tom Baden

BBSRC (BB/R014817/1)

  • Tom Baden

German Ministry for Education and Research (01GQ1601,01IS18052C,01IS18039A)

  • Philipp Berens

German Research Foundation (BE5601/4-1,EXC 2064 - 390727645)

  • Philipp Berens

Leverhulme Trust (PLP-2017-005)

  • Tom Baden

Lister Institute for Preventive Medicine (Fellowship)

  • Tom Baden

Marie Curie Sklodowska Actions individual fellowship (748716)

  • Takeshi Yoshimatsu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the UK Animals (Scientific Procedures) act 1986 and approved by the animal welfare committee of the University of Sussex. All licensed procedures (in vivo 2-photon imaging of live zebrafish larvae) are covered by the Project License PPL PE08A2AD2 (to TB).

Copyright

© 2021, Schroeder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 838
    views
  • 131
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cornelius Schroeder
  2. Jonathan Oesterle
  3. Philipp Berens
  4. Takeshi Yoshimatsu
  5. Tom Baden
(2021)
Distinct synaptic transfer functions in same-type photoreceptors
eLife 10:e67851.
https://doi.org/10.7554/eLife.67851

Share this article

https://doi.org/10.7554/eLife.67851

Further reading

    1. Neuroscience
    Victoria JH Ritvo, Alex Nguyen ... Kenneth A Norman
    Research Article

    What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings. The model can exhibit integration or differentiation depending on the amount of activity allowed to spread to competitors — inactive memories are not modified, connections to moderately active competitors are weakened (leading to differentiation), and connections to highly active competitors are strengthened (leading to integration). The model also makes several novel predictions — most importantly, that when differentiation occurs as a result of this unsupervised learning mechanism, it will be rapid and asymmetric, and it will give rise to anticorrelated representations in the region of the brain that is the source of the differentiation. Overall, these modeling results provide a computational explanation for a diverse set of seemingly contradictory empirical findings in the memory literature, as well as new insights into the dynamics at play during learning.

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.