Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires
Abstract
Increases in the scale and complexity of behavioral data pose an increasing challenge for data analysis. A common strategy involves replacing entire behaviors with small numbers of handpicked, domain-specific features, but this approach suffers from several crucial limitations. For example, handpicked features may miss important dimensions of variability, and correlations among them complicate statistical testing. Here, by contrast, we apply the variational autoencoder (VAE), an unsupervised learning method, to learn features directly from data and quantify the vocal behavior of two model species: the laboratory mouse and the zebra finch. The VAE converges on a parsimonious representation that outperforms handpicked features on a variety of common analysis tasks, enables the measurement of moment-by-moment vocal variability on the timescale of tens of milliseconds in the zebra finch, provides strong evidence that mouse ultrasonic vocalizations do not cluster as is commonly believed, and captures the similarity of tutor and pupil birdsong with qualitatively higher fidelity than previous approaches. In all, we demonstrate the utility of modern unsupervised learning approaches to the quantification of complex and high-dimensional vocal behavior.
Data availability
Dataset 1---------Online, publicly available MUPET dataset: ~5GB Available at: https://github.com/mvansegbroeck/mupet/wiki/MUPET-wiki Figs: 2, 3, 4d-eDataset 2----------Single zebra finch data: ~200-400 MB of audio generated as part of work in progress in Mooney Lab. Figs: 2e-f, 4a-c, 5a, 5d, 6b-eDataset 3---------Mouse USV dataset: ~30-40 GB of audio generated as part of work in progress in Mooney Lab. Figs: 4fDataset 5---------This is a subset of dataset 3, taken from a single mouse: ~1GB of audio. Figs: 5b-e, 6aDataset 6---------10 zebra finch pupil/tutor pairs: ~60 GB of audio generated as part of work in progress in Mooney Lab. Figs: 7Upon acceptance, all Datasets 2-6 will be archived in the Duke Digital Repository (https://research.repository.duke.edu). DOI in process.
Article and author information
Author details
Funding
National Institute of Mental Health (R01-MH117778)
- Richard Mooney
National Institute of Neurological Disorders and Stroke (R01-NS118424)
- Richard Mooney
- John Pearson
National Institute on Deafness and Other Communication Disorders (R01-DC013826)
- Richard Mooney
- John Pearson
National Institute of Neurological Disorders and Stroke (R01-NS099288)
- Richard Mooney
Eunice Kennedy Shriver National Institute of Child Health and Human Development (F31-HD098772)
- Samuel Brudner
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All data generated in conjunction for this study were generated by experiments performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Duke University, protocol numbers A171-20-08 and A172-20-08.
Reviewing Editor
- Jesse H Goldberg, Cornell University, United States
Version history
- Received: February 24, 2021
- Accepted: May 12, 2021
- Accepted Manuscript published: May 14, 2021 (version 1)
- Version of Record published: June 18, 2021 (version 2)
Copyright
© 2021, Goffinet et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,988
- Page views
-
- 380
- Downloads
-
- 26
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
-
- Computational and Systems Biology
- Genetics and Genomics
Tissue fibrosis affects multiple organs and involves a master-regulatory role of macrophages which respond to an initial inflammatory insult common in all forms of fibrosis. The recently unravelled multi-organ heterogeneity of macrophages in healthy and fibrotic human disease suggests that macrophages expressing osteopontin (SPP1), associate with lung and liver fibrosis. However, the conservation of this SPP1+ macrophage population across different tissues, and its specificity to fibrotic diseases with different etiologies remain unclear. Integrating 15 single cell RNA-sequencing datasets to profile 235,930 tissue macrophages from healthy and fibrotic heart, lung, liver, kidney, skin and endometrium, we extended the association of SPP1+ macrophages with fibrosis to all these tissues. We also identified a subpopulation expressing matrisome-associated genes (e.g., matrix metalloproteinases and their tissue inhibitors), functionally enriched for ECM remodelling and cell metabolism, representative of a matrisome-associated macrophage (MAM) polarization state within SPP1+ macrophages. Importantly, the MAM polarization state follows a differentiation trajectory from SPP1+ macrophages and is associated with a core set of regulon activity. SPP1+ macrophages without the MAM polarization state (SPP1+MAM-) show a positive association with ageing lung in mice and humans. These results suggest an advanced and conserved polarization state of SPP1+ macrophages in fibrotic tissues resulting from prolonged inflammatory cues within each tissue microenvironment.