Abstract

The neuronal microtubule cytoskeleton underlies the polarization and proper functioning of neurons, amongst others by providing tracks for motor proteins that drive intracellular transport. Different subsets of neuronal microtubules, varying in composition, stability and motor preference, are known to exist, but the high density of microtubules has so far precluded mapping their relative abundance and three-dimensional organization. Here we use different super-resolution techniques (STED, Expansion Microscopy) to explore the nanoscale organization of the neuronal microtubule network in rat hippocampal neurons. This revealed that in dendrites acetylated microtubules are enriched in the core of the dendritic shaft, while tyrosinated microtubules are enriched near the plasma membrane, thus forming a shell around the acetylated microtubules. Moreover, using a novel analysis pipeline we quantified the absolute number of acetylated and tyrosinated microtubules within dendrites and found that they account for 65-75% and ~20-30% of all microtubules, respectively, leaving only few microtubules that do not fall in either category. Because these different microtubule subtypes facilitate different motor proteins, these novel insights help to understand the spatial regulation of intracellular transport.

Data availability

All quantitative data is available on Figshare:https://doi.org/10.6084/m9.figshare.c.5306546.v2Software is available on Zenodo:https://doi.org/10.5281/zenodo.4281064https://doi.org/10.5281/zenodo.4534715https://doi.org/10.5281/zenodo.4534721

Article and author information

Author details

  1. Eugene A Katrukha

    Department of Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Daphne Jurriens

    Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Desiree M Salas Pastene

    Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Lukas C Kapitein

    Biology, Utrecht University, Utrecht, Netherlands
    For correspondence
    l.kapitein@uu.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9418-6739

Funding

H2020 European Research Council (819219)

  • Lukas C Kapitein

ZonMw (91217002)

  • Daphne Jurriens
  • Lukas C Kapitein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kassandra M Ori-McKenney, University of California, United States

Ethics

Animal experimentation: Culturing of neurons has been approved by the ethical commitee (DEC) of Utrecht University and by the Centrale Commissie Dierproeven of the Dutch government (permit application AVD1080020173404). The ethical committee (DEC) is independent and must review any experimental use of animals in the Netherlands.

Version history

  1. Preprint posted: February 26, 2021 (view preprint)
  2. Received: February 26, 2021
  3. Accepted: July 24, 2021
  4. Accepted Manuscript published: July 27, 2021 (version 1)
  5. Version of Record published: September 3, 2021 (version 2)

Copyright

© 2021, Katrukha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,293
    views
  • 460
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eugene A Katrukha
  2. Daphne Jurriens
  3. Desiree M Salas Pastene
  4. Lukas C Kapitein
(2021)
Quantitative mapping of dense microtubule arrays in mammalian neurons
eLife 10:e67925.
https://doi.org/10.7554/eLife.67925

Share this article

https://doi.org/10.7554/eLife.67925

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.