Direct Extraction of Signal and Noise Correlations from Two-Photon Calcium Imaging of Ensemble Neuronal Activity

  1. Anuththara Rupasinghe
  2. Nikolas Francis
  3. Ji Liu
  4. Zac Bowen
  5. Patrick O Kanold
  6. Behtash Babadi  Is a corresponding author
  1. University of Maryland, College Park, United States

Abstract

Neuronal activity correlations are key to understanding how populations of neurons collectively encode information. While two-photon calcium imaging has created a unique opportunity to record the activity of large populations of neurons, existing methods for inferring correlations from these data face several challenges. First, the observations of spiking activity produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking data were perfectly recovered via deconvolution, inferring network-level features from binary spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous and exogenous inputs. In this work, we propose a methodology to explicitly model and directly estimate signal and noise correlations from two-photon fluorescence observations, without requiring intermediate spike deconvolution. We provide theoretical guarantees on the performance of the proposed estimator and demonstrate its utility through applications to simulated and experimentally recorded data from the mouse auditory cortex.

Data availability

A MATLAB implementation of the proposed method has been archived in Github at https://github.com/Anuththara-Rupasinghe/Signal-Noise-Correlation. The data used in this work have been deposited in the Digital Repository at the University of Maryland at http://hdl.handle.net/1903/26917.

The following data sets were generated

Article and author information

Author details

  1. Anuththara Rupasinghe

    Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2143-8709
  2. Nikolas Francis

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ji Liu

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zac Bowen

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick O Kanold

    Department of Biology, University of Maryland, College Park, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Behtash Babadi

    Department of Electrical and Computer Engineering, University of Maryland, College Park, College Park, United States
    For correspondence
    behtash@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9856-006X

Funding

National Science Foundation (1807216)

  • Behtash Babadi

National Science Foundation (2032649)

  • Behtash Babadi

National Institutes of Health (1U19NS107464)

  • Behtash Babadi

National Institutes of Health (1U19NS107464)

  • Patrick O Kanold

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: All procedures, under Kanold lab protocol R-JAN-19-06, conformed to the guidelines of the University of Maryland Institutional Animal Care and Use Committee and the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Version history

  1. Received: March 3, 2021
  2. Accepted: June 27, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Version of Record published: August 10, 2021 (version 2)

Copyright

© 2021, Rupasinghe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,393
    views
  • 440
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anuththara Rupasinghe
  2. Nikolas Francis
  3. Ji Liu
  4. Zac Bowen
  5. Patrick O Kanold
  6. Behtash Babadi
(2021)
Direct Extraction of Signal and Noise Correlations from Two-Photon Calcium Imaging of Ensemble Neuronal Activity
eLife 10:e68046.
https://doi.org/10.7554/eLife.68046

Share this article

https://doi.org/10.7554/eLife.68046

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.