Inter-tissue convergence of gene expression during ageing suggests age-related loss of tissue and cellular identity

  1. Hamit Izgi
  2. DingDing Han
  3. Ulas Isildak
  4. Shuyun Huang
  5. Ece Kocabiyik
  6. Philipp Khaitovich  Is a corresponding author
  7. Mehmet Somel  Is a corresponding author
  8. Handan Melike Dönertaş  Is a corresponding author
  1. Middle East Technical University, Turkey
  2. Shanghai Institutes for Biological Sciences, China
  3. Skolkovo Institute of Science and Technology, Russian Federation
  4. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Developmental trajectories of gene expression may reverse in their direction during ageing, a phenomenon previously linked to cellular identity loss. Our analysis of cerebral cortex, lung, liver and muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal development, but during ageing, they tend to converge towards similar expression levels, a process we term Divergence followed by Convergence, or DiCo. We found that DiCo was most prevalent among tissue-specific genes and associated with loss of tissue identity, which is confirmed using data from independent mouse and human datasets. Further, using publicly available single-cell transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell type composition and also by cell-autonomous expression changes within particular cell types.

Data availability

Sequencing data generated for this study have been deposited in GEO under accession code GSE167665. All data analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and figure supplements.Four additional and previously published datasets are used in this study:Jonker et al. 2013, GTEx Consortium et al. 2017, Schaum et al. 2020, and Tabula Muris Consortium 2020.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hamit Izgi

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4030-3132
  2. DingDing Han

    CAS Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ulas Isildak

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuyun Huang

    CAS Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ece Kocabiyik

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  6. Philipp Khaitovich

    Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    For correspondence
    p.khaitovich@skoltech.ru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4305-0054
  7. Mehmet Somel

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    For correspondence
    somel.mehmet@googlemail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3138-1307
  8. Handan Melike Dönertaş

    Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    donertas.melike@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9788-6535

Funding

European Molecular Biology Laboratory

  • Handan Melike Dönertaş

Scientific and Technological Council of Turkey (2232)

  • Mehmet Somel

Science Academy BAGEP Awards

  • Mehmet Somel

METU Internal Grant

  • Mehmet Somel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Post-mortem samples were obtained from 16 C57BL/6J mice aged between 2 days and 904 days. All mouse experiments were overseen by the Institutional Animal Welfare Officer of the Max Planck Institute for Evolutionary Anthropology (MPI-EVA). They were performed according to the German Animal Welfare Legislation, ("Tierschutzgesetz") and registered with the Federal State Authority Landesdirektion Sachsen (No. 24-9162. 11-01 (T62/08)). The mice were sacrificed for reasons independent of this study, their tissues were harvested and frozen immediately, and stored at -80{degree sign}C.

Human subjects: Data involving human subjects were obtained from a published dataset, GTEx portal (https://www.gtexportal.org/home/datasets, with accession phs000424.v8.p2). Hence, no ethical statement is required.

Copyright

© 2022, Izgi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,440
    views
  • 538
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hamit Izgi
  2. DingDing Han
  3. Ulas Isildak
  4. Shuyun Huang
  5. Ece Kocabiyik
  6. Philipp Khaitovich
  7. Mehmet Somel
  8. Handan Melike Dönertaş
(2022)
Inter-tissue convergence of gene expression during ageing suggests age-related loss of tissue and cellular identity
eLife 11:e68048.
https://doi.org/10.7554/eLife.68048

Share this article

https://doi.org/10.7554/eLife.68048

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Ting Liu, Xing Shen ... Zhihong Xue
    Research Article

    The interplay between G4s and R-loops are emerging in regulating DNA repair, replication, and transcription. A comprehensive picture of native co-localized G4s and R-loops in living cells is currently lacking. Here, we describe the development of HepG4-seq and an optimized HBD-seq methods, which robustly capture native G4s and R-loops, respectively, in living cells. We successfully employed these methods to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). We discovered that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes. We further demonstrated the helicase Dhx9 as a direct and major regulator that modulates the formation and resolution of co-localized G4s and R-loops. Depletion of Dhx9 impaired the self-renewal and differentiation capacities of mESCs by altering the transcription of co-localized G4s and R-loops -associated genes. Taken together, our work established that the endogenous co-localized G4s and R-loops are prevalently persisted in the regulatory regions of active genes and are involved in the transcriptional regulation of their linked genes, opening the door for exploring broader roles of co-localized G4s and R-loops in development and disease.