Inter-tissue convergence of gene expression during ageing suggests age-related loss of tissue and cellular identity

  1. Hamit Izgi
  2. DingDing Han
  3. Ulas Isildak
  4. Shuyun Huang
  5. Ece Kocabiyik
  6. Philipp Khaitovich  Is a corresponding author
  7. Mehmet Somel  Is a corresponding author
  8. Handan Melike Dönertaş  Is a corresponding author
  1. Middle East Technical University, Turkey
  2. Shanghai Institutes for Biological Sciences, China
  3. Skolkovo Institute of Science and Technology, Russian Federation
  4. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Developmental trajectories of gene expression may reverse in their direction during ageing, a phenomenon previously linked to cellular identity loss. Our analysis of cerebral cortex, lung, liver and muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal development, but during ageing, they tend to converge towards similar expression levels, a process we term Divergence followed by Convergence, or DiCo. We found that DiCo was most prevalent among tissue-specific genes and associated with loss of tissue identity, which is confirmed using data from independent mouse and human datasets. Further, using publicly available single-cell transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell type composition and also by cell-autonomous expression changes within particular cell types.

Data availability

Sequencing data generated for this study have been deposited in GEO under accession code GSE167665. All data analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and figure supplements.Four additional and previously published datasets are used in this study:Jonker et al. 2013, GTEx Consortium et al. 2017, Schaum et al. 2020, and Tabula Muris Consortium 2020.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hamit Izgi

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4030-3132
  2. DingDing Han

    CAS Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ulas Isildak

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuyun Huang

    CAS Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ece Kocabiyik

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  6. Philipp Khaitovich

    Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    For correspondence
    p.khaitovich@skoltech.ru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4305-0054
  7. Mehmet Somel

    Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
    For correspondence
    somel.mehmet@googlemail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3138-1307
  8. Handan Melike Dönertaş

    Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    donertas.melike@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9788-6535

Funding

European Molecular Biology Laboratory

  • Handan Melike Dönertaş

Scientific and Technological Council of Turkey (2232)

  • Mehmet Somel

Science Academy BAGEP Awards

  • Mehmet Somel

METU Internal Grant

  • Mehmet Somel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Post-mortem samples were obtained from 16 C57BL/6J mice aged between 2 days and 904 days. All mouse experiments were overseen by the Institutional Animal Welfare Officer of the Max Planck Institute for Evolutionary Anthropology (MPI-EVA). They were performed according to the German Animal Welfare Legislation, ("Tierschutzgesetz") and registered with the Federal State Authority Landesdirektion Sachsen (No. 24-9162. 11-01 (T62/08)). The mice were sacrificed for reasons independent of this study, their tissues were harvested and frozen immediately, and stored at -80{degree sign}C.

Human subjects: Data involving human subjects were obtained from a published dataset, GTEx portal (https://www.gtexportal.org/home/datasets, with accession phs000424.v8.p2). Hence, no ethical statement is required.

Copyright

© 2022, Izgi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,404
    views
  • 536
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hamit Izgi
  2. DingDing Han
  3. Ulas Isildak
  4. Shuyun Huang
  5. Ece Kocabiyik
  6. Philipp Khaitovich
  7. Mehmet Somel
  8. Handan Melike Dönertaş
(2022)
Inter-tissue convergence of gene expression during ageing suggests age-related loss of tissue and cellular identity
eLife 11:e68048.
https://doi.org/10.7554/eLife.68048

Share this article

https://doi.org/10.7554/eLife.68048

Further reading

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.

    1. Developmental Biology
    2. Genetics and Genomics
    Mitchell Bestry, Alexander N Larcombe ... David Martino
    Research Article

    Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.