VASP mediated actin dynamics activate and recruit a filopodia myosin

  1. Ashley L Arthur
  2. Amy Crawford
  3. Anne Houdusse
  4. Margaret A Titus  Is a corresponding author
  1. Yale University, United States
  2. University of Minnesota, United States
  3. Institut Curie, Centre National de la Recherche Scientifique, France

Abstract

Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin binding protein, the state of the actin cytoskeleton and MF myosin activity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ashley L Arthur

    MBB, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8661-2873
  2. Amy Crawford

    Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6147-7716
  3. Anne Houdusse

    Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8566-0336
  4. Margaret A Titus

    Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    titus004@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7583-9092

Funding

Centre National de la Recherche Scientifique

  • Anne Houdusse

Agence Nationale de la Recherche (ANR-17-CE11-0029-01)

  • Anne Houdusse

Agence Nationale de la Recherche (LabexCelTisPhyBio 11-LBX-0038)

  • Anne Houdusse

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02PSL)

  • Anne Houdusse

National Institutes of Health (F31GM128325)

  • Ashley L Arthur

National Institutes of Health (R01GM122917)

  • Margaret A Titus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Derek Applewhite, Reed College, United States

Version history

  1. Received: March 4, 2021
  2. Accepted: May 20, 2021
  3. Accepted Manuscript published: May 27, 2021 (version 1)
  4. Version of Record published: August 9, 2021 (version 2)

Copyright

© 2021, Arthur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,732
    views
  • 271
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ashley L Arthur
  2. Amy Crawford
  3. Anne Houdusse
  4. Margaret A Titus
(2021)
VASP mediated actin dynamics activate and recruit a filopodia myosin
eLife 10:e68082.
https://doi.org/10.7554/eLife.68082

Share this article

https://doi.org/10.7554/eLife.68082