Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection

  1. Mackenzie M Shipley
  2. Vidya Mangala Prasad
  3. Laura E Doepker
  4. Adam S Dingens
  5. Duncan K Ralph
  6. Elias Harkins
  7. Amrit Dhar
  8. Dana Arenz
  9. Vrasha Chohan
  10. Haidyn Weight
  11. Kishor Mandaliya
  12. Jesse D Bloom
  13. Frederick Matsen IV
  14. Kelly K Lee  Is a corresponding author
  15. Julie M Overbaugh  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of Washington, United States
  3. Coast Provincial General Hospital, Kenya

Abstract

Stimulating broadly neutralizing antibodies (bnAbs) directly from germline remains a barrier for HIV vaccines. HIV superinfection elicits bnAbs more frequently than single infection, providing clues of how to elicit such responses. We used longitudinal antibody sequencing and structural studies to characterize bnAb development from a superinfection case. BnAb QA013.2 bound initial and superinfecting viral Env, despite its probable naïve progenitor only recognizing the superinfecting strain, suggesting both viruses influenced this lineage. A 4.15 Å cryo-EM structure of QA013.2 bound to native-like trimer showed recognition of V3 signatures (N301/N332 and GDIR). QA013.2 relies less on CDRH3 and more on framework and CDRH1 for affinity and breadth compared to other V3/glycan-specific bnAbs. Antigenic profiling revealed that viral escape was achieved by changes in the structurally-defined epitope and by mutations in V1. These results highlight shared and novel properties of QA013.2 relative to other V3/glycan-specific bnAbs in the setting of sequential, diverse antigens.

Data availability

* Sequencing data have been deposited at BioProject SRA, accession PRJNA674442.* The EM map and atomic coordinates for QA013.2 complexed to BG505.SOSIP.664 are deposited under accession codes EMD-24195 and PDB 7N65.* Source data have been provided for Figures 2-8.

The following data sets were generated

Article and author information

Author details

  1. Mackenzie M Shipley

    Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7436-5622
  2. Vidya Mangala Prasad

    Medicinal Chemistry, Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Laura E Doepker

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4514-5003
  4. Adam S Dingens

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9603-9409
  5. Duncan K Ralph

    Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  6. Elias Harkins

    Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Amrit Dhar

    Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  8. Dana Arenz

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  9. Vrasha Chohan

    Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Haidyn Weight

    Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  11. Kishor Mandaliya

    Women's Health Project, Coast Provincial General Hospital, Mombasa, Kenya
    Competing interests
    No competing interests declared.
  12. Jesse D Bloom

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1267-3408
  13. Frederick Matsen IV

    Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    No competing interests declared.
  14. Kelly K Lee

    Medicinal Chemistry, Microbiology, University of Washington, Seattle, United States
    For correspondence
    kklee@uw.edu
    Competing interests
    No competing interests declared.
  15. Julie M Overbaugh

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    joverbau@fredhutch.org
    Competing interests
    Julie M Overbaugh, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0239-9444

Funding

National Institutes of Health (R01 AI140891)

  • Jesse D Bloom

National Institutes of Health (R01 AI146028)

  • Frederick Matsen IV

National Institutes of Health (U19 AI117891)

  • Frederick Matsen IV

National Institutes of Health (U19 AI128914)

  • Frederick Matsen IV

National Institutes of Health (R01 AI140868)

  • Kelly K Lee

National Institutes of Health (R01 AI138709)

  • Julie M Overbaugh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study (Clinical Trial Management System Number RG1000880) was approved by members of the ethical review committees (file number 7776) at the University of Nairobi, the Fred Hutchinson Cancer Research Center, and the University of Washington. Study participants provided written informed consent prior to enrollment.

Copyright

© 2021, Shipley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,142
    views
  • 148
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mackenzie M Shipley
  2. Vidya Mangala Prasad
  3. Laura E Doepker
  4. Adam S Dingens
  5. Duncan K Ralph
  6. Elias Harkins
  7. Amrit Dhar
  8. Dana Arenz
  9. Vrasha Chohan
  10. Haidyn Weight
  11. Kishor Mandaliya
  12. Jesse D Bloom
  13. Frederick Matsen IV
  14. Kelly K Lee
  15. Julie M Overbaugh
(2021)
Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection
eLife 10:e68110.
https://doi.org/10.7554/eLife.68110

Share this article

https://doi.org/10.7554/eLife.68110

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Berit Siedentop, Viacheslav N Kachalov ... Sebastian Bonhoeffer
    Research Article

    Background:

    Under which conditions antibiotic combination therapy decelerates rather than accelerates resistance evolution is not well understood. We examined the effect of combining antibiotics on within-patient resistance development across various bacterial pathogens and antibiotics.

    Methods:

    We searched CENTRAL, EMBASE, and PubMed for (quasi)-randomised controlled trials (RCTs) published from database inception to 24 November 2022. Trials comparing antibiotic treatments with different numbers of antibiotics were included. Patients were considered to have acquired resistance if, at the follow-up culture, a resistant bacterium (as defined by the study authors) was detected that had not been present in the baseline culture. We combined results using a random effects model and performed meta-regression and stratified analyses. The trials’ risk of bias was assessed with the Cochrane tool.

    Results:

    42 trials were eligible and 29, including 5054 patients, qualified for statistical analysis. In most trials, resistance development was not the primary outcome and studies lacked power. The combined odds ratio for the acquisition of resistance comparing the group with the higher number of antibiotics with the comparison group was 1.23 (95% CI 0.68–2.25), with substantial between-study heterogeneity (I2=77%). We identified tentative evidence for potential beneficial or detrimental effects of antibiotic combination therapy for specific pathogens or medical conditions.

    Conclusions:

    The evidence for combining a higher number of antibiotics compared to fewer from RCTs is scarce and overall compatible with both benefit or harm. Trials powered to detect differences in resistance development or well-designed observational studies are required to clarify the impact of combination therapy on resistance.

    Funding:

    Support from the Swiss National Science Foundation (grant 310030B_176401 (SB, BS, CW), grant 32FP30-174281 (ME), grant 324730_207957 (RDK)) and from the National Institute of Allergy and Infectious Diseases (NIAID, cooperative agreement AI069924 (ME)) is gratefully acknowledged.

    1. Microbiology and Infectious Disease
    Dipasree Hajra, Raju S Rajmani ... Dipshikha Chakravortty
    Research Article

    Sirtuins are the major players in host immunometabolic regulation. However, the role of sirtuins in the modulation of the immune metabolism pertaining to salmonellosis is largely unknown. Here, our investigation focussed on the role of two important sirtuins, SIRT1 and SIRT3, shedding light on their impact on intracellular Salmonella’s metabolic switch and pathogenesis establishment. Our study indicated the ability of the live Salmonella Typhimurium to differentially regulate the levels of SIRT1 and SIRT3 for maintaining the high glycolytic metabolism and low fatty acid metabolism in Salmonella. Perturbing SIRT1 or SIRT3 through knockdown or inhibition resulted in a remarkable shift in the host metabolism to low fatty acid oxidation and high glycolysis. This switch led to decreased proliferation of Salmonella in the macrophages. Further, Salmonella-induced higher levels of SIRT1 and SIRT3 led to a skewed polarization state of the macrophages from a pro-inflammatory M1 state toward an immunosuppressive M2, making it more conducive for the intracellular life of Salmonella. Alongside, governing immunological functions by modulating p65 NF-κB acetylation, SIRT1, and SIRT3 also skew Salmonella-induced host metabolic switch by regulating the acetylation status of HIF-1α and PDHA1. Interestingly, though knockdown of SIRT1/3 attenuated Salmonella proliferation in macrophages, in in vivo mice model of infection, inhibition or knockdown of SIRT1/3 led to more dissemination and higher organ burden, which can be attributed to enhanced ROS and IL-6 production. Our study hence reports for the first time that Salmonella modulates SIRT1/3 levels to maintain its own metabolism for successful pathogenesis.