Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries

  1. Damián G Hernández  Is a corresponding author
  2. Samuel J Sober  Is a corresponding author
  3. Ilya Nemenman  Is a corresponding author
  1. Centro Atómico Bariloche and Instituto Balseiro, Argentina
  2. Emory University, United States

Abstract

The problem of deciphering how low-level patterns (action potentials in the brain, amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic function) represents the central challenge of quantitative biology. The lack of general methods for doing so from the size of datasets that can be collected experimentally severely limits our understanding of the biological world. For example, in neuroscience, some sensory and motor codes have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial complexity of such pattern codes have precluded development of methods for their comprehensive analysis. Thus, just as it is hard to predict a protein’s function based on its sequence, we still do not understand how to accurately predict an organism's behavior based on neural activity. Here we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of problems. We demonstrate its utility in an application to neural data, detecting precisely timed spike patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during singing from neurons in a vocal control region, our method detects such codewords with an arbitrary number of spikes, does so from small data sets, and accounts for dependencies in occurrences of codewords. Detecting such comprehensive motor control dictionaries can improve our understanding of skilled motor control and the neural bases of sensorimotor learning in animals. To further illustrate the utility of uBIA, used it to identify the distinct sets of activity patterns that encode vocal motor exploration versus typical song production. Crucially, our method can be used not only for analysis of neural systems, but also for understanding the structure of correlations in other biological and nonbiological datasets.

Data availability

The software implementation of uBIA is available from https://github.com/dghernandez/decomotor. The data used in this work is availablefrom https://figshare.com/articles/Songbird_premotor_dictionaries/10315844.

The following previously published data sets were used

Article and author information

Author details

  1. Damián G Hernández

    Department of Medical Physics, Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina
    For correspondence
    damian.g.h.l@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8995-7495
  2. Samuel J Sober

    Department of Biology, Emory University, Atlanta, United States
    For correspondence
    samuel.j.sober@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1140-7469
  3. Ilya Nemenman

    Department of Physics, Emory University, Atlanta, United States
    For correspondence
    ilya.nemenman@emory.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-EB022872)

  • Damián G Hernández
  • Samuel J Sober
  • Ilya Nemenman

Simons Foundation (Simons Investigator in MPS)

  • Ilya Nemenman

National Institutes of Health (R01-NS084844)

  • Samuel J Sober
  • Ilya Nemenman

National Institutes of Health (R01-NS099375)

  • Damián G Hernández
  • Samuel J Sober
  • Ilya Nemenman

National Science Foundation (BCS-1822677 (CRCNS Program))

  • Samuel J Sober
  • Ilya Nemenman

KITP ((NSF) PHY-1748958)

  • Ilya Nemenman

KITP ((NIH) R25GM067110)

  • Ilya Nemenman

KITP ((Gordon and Betty Moore) 2919.01)

  • Ilya Nemenman

Aspen Center for Physics ((NSF) PHY-1607611)

  • Samuel J Sober
  • Ilya Nemenman

Simons Foundation (The Simons-Emory International Consortium on Motor Control)

  • Samuel J Sober
  • Ilya Nemenman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,147
    views
  • 226
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damián G Hernández
  2. Samuel J Sober
  3. Ilya Nemenman
(2022)
Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries
eLife 11:e68192.
https://doi.org/10.7554/eLife.68192

Share this article

https://doi.org/10.7554/eLife.68192

Further reading

    1. Neuroscience
    Diellor Basha, Amirmohammad Azarmehri ... Igor Timofeev
    Research Article

    Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.

    1. Neuroscience
    Maxine K Loh, Samantha J Hurh ... Mitchell F Roitman
    Research Article

    Mesolimbic dopamine encoding of non-contingent rewards and reward-predictive cues has been well established. Considerable debate remains over how mesolimbic dopamine responds to aversion and in the context of aversive conditioning. Inconsistencies may arise from the use of aversive stimuli that are transduced along different neural paths relative to reward or the conflation of responses to avoidance and aversion. Here, we made intraoral infusions of sucrose and measured how dopamine and behavioral responses varied to the changing valence of sucrose. Pairing intraoral sucrose with malaise via injection of lithium chloride (LiCl) caused the development of a conditioned taste aversion (CTA), which rendered the typically rewarding taste of sucrose aversive upon subsequent re-exposure. Following CTA formation, intraoral sucrose suppressed the activity of ventral tegmental area dopamine neurons (VTADA) and nucleus accumbens (NAc) dopamine release. This pattern of dopamine signaling after CTA is similar to intraoral infusions of innately aversive quinine and contrasts with responses to sucrose when it was novel or not paired with LiCl. Dopamine responses were negatively correlated with behavioral reactivity to intraoral sucrose and predicted home cage sucrose preference. Further, dopamine responses scaled with the strength of the CTA, which was increased by repeated LiCl pairings and weakened through extinction. Thus, the findings demonstrate differential dopamine encoding of the same taste stimulus according to its valence, which is aligned to distinct behavioral responses.