The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores

  1. Zhenyong Wu
  2. Nadiv Dharan
  3. Zachary A McDargh
  4. Sathish Thiyagarajan
  5. Ben O'Shaughnessy
  6. Erdem Karatekin  Is a corresponding author
  1. University of Wisconsin, United States
  2. Columbia University, United States
  3. Yale University School of Medicine, United States

Abstract

All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.

Data availability

All data associated with the plots shown in this study are included in the manuscript and supporting files. Source data files have been provided for all figures, in the form of a .zip file containing mostly matlab .fig and/or .mat files corresponding to the data presented in the manuscript and the Appendix. The raw data can be extracted for every plot from the .fig file. In a few cases, we included excel or Igor Pro files.

Article and author information

Author details

  1. Zhenyong Wu

    Department of Neuroscience, University of Wisconsin, Madison, WI, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nadiv Dharan

    Chemical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zachary A McDargh

    Chemical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9022-5593
  4. Sathish Thiyagarajan

    Department of Physics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ben O'Shaughnessy

    Department of Chemical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Erdem Karatekin

    Department of Cellular and Molecular Physiology, Yale University School of Medicine, West Haven, United States
    For correspondence
    erdem.karatekin@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5934-8728

Funding

National Institute of Neurological Disorders and Stroke (R01NS113236)

  • Erdem Karatekin

National Eye Institute (R01EY010542)

  • Erdem Karatekin

National Institute of General Medical Sciences (R01GM117046)

  • Ben O'Shaughnessy

Columbia University (Shared Research Computing Facility)

  • Ben O'Shaughnessy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Felix Campelo, The Barcelona Institute of Science and Technology, Spain

Version history

  1. Received: March 9, 2021
  2. Accepted: June 29, 2021
  3. Accepted Manuscript published: June 30, 2021 (version 1)
  4. Version of Record published: July 21, 2021 (version 2)

Copyright

© 2021, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,566
    views
  • 275
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhenyong Wu
  2. Nadiv Dharan
  3. Zachary A McDargh
  4. Sathish Thiyagarajan
  5. Ben O'Shaughnessy
  6. Erdem Karatekin
(2021)
The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores
eLife 10:e68215.
https://doi.org/10.7554/eLife.68215

Share this article

https://doi.org/10.7554/eLife.68215

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.