The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. UCLA, United States
  3. Childrens Hospital of Philadelphia, United States
  4. Intrinsic Lifesciences, LLC, United States
  5. Saint Louis University, United States

Abstract

Background: Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis.

Methods: To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β–thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone.

Results: We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low–bone–mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP–mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+ mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss.

Conclusions: Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β–thalassemia.

Funding: Y.Z.G. acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to Y.Z.G. and DK095112 to R.F., S.R., and Y.Z.G.). M.Z. acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). T.Y. acknowledges the support of the National Institute on Aging (R01 AG71870). S.R. acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (C.U.R.E.) Program Pennsylvania.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melanie Castro-Mollo

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Sakshi Gera

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1615-6259
  3. Marc Ruiz Martinez

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Maria Feola

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Anisa Gumerova

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Marina Planoutene

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Cara Clementelli

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  8. Veena Sangkhae

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Carla Casu

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Se-Min Kim

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Vaughn Ostland

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Vaughn Ostland, employment and stock options - Vaugh Ostland is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  12. Huiling Han

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Huiling Han, employment and stock options - Huiling Han is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  13. Elizabeta Nemeth

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Robert Fleming

    Pediatrics, Saint Louis University, Saint Louis, United States
    Competing interests
    No competing interests declared.
  15. Stefano Rivella

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  16. Daria Lizneva

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  17. Tony Yuen

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  18. Mone Zaidi

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Mone Zaidi, Deputy editor, eLife.
  19. Yelena Ginzburg

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    yelena.ginzburg@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3496-3783

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK107670)

  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK095112)

  • Robert Fleming
  • Stefano Rivella
  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK113627)

  • Mone Zaidi

National Institute on Aging (AG60917)

  • Mone Zaidi

National Institute of Diabetes and Digestive and Kidney Diseases (DK09055)

  • Stefano Rivella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#16-0143) of the Icahn School of Medicine.

Copyright

© 2021, Castro-Mollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg
(2021)
The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry
eLife 10:e68217.
https://doi.org/10.7554/eLife.68217

Share this article

https://doi.org/10.7554/eLife.68217

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).