The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. UCLA, United States
  3. Childrens Hospital of Philadelphia, United States
  4. Intrinsic Lifesciences, LLC, United States
  5. Saint Louis University, United States

Abstract

Background: Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis.

Methods: To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β–thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone.

Results: We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low–bone–mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP–mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+ mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss.

Conclusions: Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β–thalassemia.

Funding: Y.Z.G. acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to Y.Z.G. and DK095112 to R.F., S.R., and Y.Z.G.). M.Z. acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). T.Y. acknowledges the support of the National Institute on Aging (R01 AG71870). S.R. acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (C.U.R.E.) Program Pennsylvania.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melanie Castro-Mollo

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Sakshi Gera

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1615-6259
  3. Marc Ruiz Martinez

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Maria Feola

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Anisa Gumerova

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Marina Planoutene

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Cara Clementelli

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  8. Veena Sangkhae

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Carla Casu

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Se-Min Kim

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Vaughn Ostland

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Vaughn Ostland, employment and stock options - Vaugh Ostland is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  12. Huiling Han

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Huiling Han, employment and stock options - Huiling Han is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  13. Elizabeta Nemeth

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Robert Fleming

    Pediatrics, Saint Louis University, Saint Louis, United States
    Competing interests
    No competing interests declared.
  15. Stefano Rivella

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  16. Daria Lizneva

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  17. Tony Yuen

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  18. Mone Zaidi

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Mone Zaidi, Deputy editor, eLife.
  19. Yelena Ginzburg

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    yelena.ginzburg@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3496-3783

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK107670)

  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK095112)

  • Robert Fleming
  • Stefano Rivella
  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK113627)

  • Mone Zaidi

National Institute on Aging (AG60917)

  • Mone Zaidi

National Institute of Diabetes and Digestive and Kidney Diseases (DK09055)

  • Stefano Rivella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Subburaman Mohan, Loma Linda University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#16-0143) of the Icahn School of Medicine.

Version history

  1. Received: March 8, 2021
  2. Accepted: May 17, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Version of Record published: June 15, 2021 (version 2)

Copyright

© 2021, Castro-Mollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,252
    views
  • 258
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg
(2021)
The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry
eLife 10:e68217.
https://doi.org/10.7554/eLife.68217

Share this article

https://doi.org/10.7554/eLife.68217

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Medicine
    Nguyen Lam Vuong, Nguyen Than Ha Quyen ... Ronald Geskus
    Research Article

    Background:

    Viremia is a critical factor in understanding the pathogenesis of dengue infection, but limited data exist on viremia kinetics. This study aimed to investigate the kinetics of viremia and its effects on subsequent platelet count, severe dengue, and plasma leakage.

    Methods:

    We pooled data from three studies conducted in Vietnam between 2000 and 2016, involving 2340 dengue patients with daily viremia measurements and platelet counts after symptom onset. Viremia kinetics were assessed using a random effects model that accounted for left-censored data. The effects of viremia on subsequent platelet count and clinical outcomes were examined using a landmark approach with a random effects model and logistic regression model with generalized estimating equations, respectively. The rate of viremia decline was derived from the model of viremia kinetics. Its effect on the clinical outcomes was assessed by logistic regression models.

    Results:

    Viremia levels rapidly decreased following symptom onset, with variations observed depending on the infecting serotype. DENV-1 exhibited the highest mean viremia levels during the first 5–6 days, while DENV-4 demonstrated the shortest clearance time. Higher viremia levels were associated with decreased subsequent platelet counts from day 6 onwards. Elevated viremia levels on each illness day increased the risk of developing severe dengue and plasma leakage. However, the effect size decreased with later illness days. A more rapid decline in viremia is associated with a reduced risk of the clinical outcomes.

    Conclusions:

    This study provides comprehensive insights into viremia kinetics and its effect on subsequent platelet count and clinical outcomes in dengue patients. Our findings underscore the importance of measuring viremia levels during the early febrile phase for dengue studies and support the use of viremia kinetics as outcome for phase-2 dengue therapeutic trials.

    Funding:

    Wellcome Trust and European Union Seventh Framework Programme.