The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. UCLA, United States
  3. Childrens Hospital of Philadelphia, United States
  4. Intrinsic Lifesciences, LLC, United States
  5. Saint Louis University, United States

Abstract

Background: Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis.

Methods: To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β–thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone.

Results: We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low–bone–mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP–mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+ mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss.

Conclusions: Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β–thalassemia.

Funding: Y.Z.G. acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to Y.Z.G. and DK095112 to R.F., S.R., and Y.Z.G.). M.Z. acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). T.Y. acknowledges the support of the National Institute on Aging (R01 AG71870). S.R. acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (C.U.R.E.) Program Pennsylvania.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Melanie Castro-Mollo

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  2. Sakshi Gera

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1615-6259
  3. Marc Ruiz Martinez

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  4. Maria Feola

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  5. Anisa Gumerova

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  6. Marina Planoutene

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  7. Cara Clementelli

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  8. Veena Sangkhae

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Carla Casu

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Se-Min Kim

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  11. Vaughn Ostland

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Vaughn Ostland, employment and stock options - Vaugh Ostland is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  12. Huiling Han

    Intrinsic Lifesciences, LLC, Intrinsic Lifesciences, LLC, La Jolla, United States
    Competing interests
    Huiling Han, employment and stock options - Huiling Han is affiliated with Intrinsic Lifesciences, LLC. The author has no other competing interests to declare..
  13. Elizabeta Nemeth

    Pulmonary and Critical Care, UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  14. Robert Fleming

    Pediatrics, Saint Louis University, Saint Louis, United States
    Competing interests
    No competing interests declared.
  15. Stefano Rivella

    Pediatrics, Childrens Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  16. Daria Lizneva

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  17. Tony Yuen

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
  18. Mone Zaidi

    Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Mone Zaidi, Deputy editor, eLife.
  19. Yelena Ginzburg

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    yelena.ginzburg@mssm.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3496-3783

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK107670)

  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK095112)

  • Robert Fleming
  • Stefano Rivella
  • Yelena Ginzburg

National Institute of Diabetes and Digestive and Kidney Diseases (DK113627)

  • Mone Zaidi

National Institute on Aging (AG60917)

  • Mone Zaidi

National Institute of Diabetes and Digestive and Kidney Diseases (DK09055)

  • Stefano Rivella

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#16-0143) of the Icahn School of Medicine.

Copyright

© 2021, Castro-Mollo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,340
    views
  • 270
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melanie Castro-Mollo
  2. Sakshi Gera
  3. Marc Ruiz Martinez
  4. Maria Feola
  5. Anisa Gumerova
  6. Marina Planoutene
  7. Cara Clementelli
  8. Veena Sangkhae
  9. Carla Casu
  10. Se-Min Kim
  11. Vaughn Ostland
  12. Huiling Han
  13. Elizabeta Nemeth
  14. Robert Fleming
  15. Stefano Rivella
  16. Daria Lizneva
  17. Tony Yuen
  18. Mone Zaidi
  19. Yelena Ginzburg
(2021)
The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry
eLife 10:e68217.
https://doi.org/10.7554/eLife.68217

Share this article

https://doi.org/10.7554/eLife.68217

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.