The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation

  1. Xiaoling Li  Is a corresponding author
  2. Richard Fetter
  3. Tina Schwabe
  4. Christophe Jung
  5. Liren Liu
  6. Hermann Steller  Is a corresponding author
  7. Ulrike Gaul
  1. The Rockefeller University, United States
  2. Howard Hughes Medical Institute, United States
  3. University of Munich, Germany
  4. Tianjin Medical University Cancer Institute and Hospital, China

Abstract

The blood-brain barrier (BBB) of Drosophila is comprised of a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper SJ organization in a highly coordinated spatiotemporal manner. These effects are mediated in part by PKA's molecular targets MLCK and Rho1. Moreover, 3D reconstruction of SJ ultrastructure demonstrates that the continuity of individual SJ segments, and not their total length, is crucial for generating a proper paracellular seal. Based on these findings, we propose that polarized Moody/PKA signaling plays a central role in controlling the cell growth and maintaining BBB integrity during the continuous morphogenesis of the SPG secondary epithelium, which is critical to maintain tissue size and brain homeostasis during organogenesis.

Data availability

All data generated or analysed during this study are included in Dyrad generic databases with DOI https://doi.org/10.5061/dryad.fj6q573tx.Source data files have been provided for Figures 1, 2, 3, 4, 6 and Figure supplement 2 and 5.

The following data sets were generated

Article and author information

Author details

  1. Xiaoling Li

    Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, United States
    For correspondence
    lixiaoling@tmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3408-7066
  2. Richard Fetter

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tina Schwabe

    Department of Biochemistry, Center of Integrated Protein Science (CIPSM), University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christophe Jung

    Department of Biochemistry, University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Liren Liu

    Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hermann Steller

    Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, United States
    For correspondence
    steller@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4577-4507
  7. Ulrike Gaul

    Department of Biochemistry, University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (5R01EY011560)

  • Xiaoling Li
  • Ulrike Gaul

Deutsche Forschungsgemeinschaft (SFB 646,SFB1064)

  • Ulrike Gaul

Bundesministerium für Bildung und Forschung (Alexander von Humboldt-Professorship)

  • Ulrike Gaul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris Q Doe, Howard Hughes Medical Institute, University of Oregon, United States

Version history

  1. Received: March 10, 2021
  2. Preprint posted: March 11, 2021 (view preprint)
  3. Accepted: August 11, 2021
  4. Accepted Manuscript published: August 12, 2021 (version 1)
  5. Version of Record published: August 26, 2021 (version 2)

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,468
    views
  • 246
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoling Li
  2. Richard Fetter
  3. Tina Schwabe
  4. Christophe Jung
  5. Liren Liu
  6. Hermann Steller
  7. Ulrike Gaul
(2021)
The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation
eLife 10:e68275.
https://doi.org/10.7554/eLife.68275

Share this article

https://doi.org/10.7554/eLife.68275

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.