Abstract

Retinoic acid (RA) is an essential signaling molecule for cardiac development and plays a protective role in the heart after myocardial infarction (MI). In both cases, the effect of RA signaling on cardiomyocytes, the principle cell type of the heart, has been reported to be indirect. Here we have developed an inducible murine transgenic RA-reporter line using CreERT2 technology that permits lineage tracing of RA-responsive cells and faithfully recapitulates endogenous RA activity in multiple organs during embryonic development. Strikingly, we have observed a direct RA response in cardiomyocytes during mid-late gestation and after MI. Ablation of RA signaling through deletion of the Aldh1a1/a2/a3 genes encoding RA-synthesizing enzymes leads to increased cardiomyocyte apoptosis in adults subjected to MI. RNA sequencing analysis reveals Tgm2 and Ace1, two genes with well-established links to cardiac repair, as potential targets of RA signaling in primary cardiomyocytes, thereby providing novel links between the RA pathway and heart disease.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE161429

The following data sets were generated

Article and author information

Author details

  1. Fabio Da Silva

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8983-2238
  2. Fariba Jian Motamedi

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lahiru Chamara Weerasinghe Arachchige

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4492-8946
  4. Amelie Tison

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen T Bradford

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9508-3894
  6. Jonathan Lefebvre

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Pascal Dolle

    Inserm U1258, UNISTRA CNRS, UMR7104, IGBMC, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Norbert B Ghyselinck

    Inserm U1258, UNISTRA CNRS, UMR7104, IGBMC, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Kay D Wagner

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Andreas Schedl

    Inserm, CNSR, iBV, Université Côte d'Azur, Nice, France
    For correspondence
    Andreas.Schedl@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-7396

Funding

Fondation de France (00056856)

  • Andreas Schedl

Fondation ARC pour la Recherche sur le Cancer (SL22020605297)

  • Andreas Schedl

Agence Nationale de la Recherche (ANR-11-LABX-0028-01)

  • Fabio Da Silva
  • Andreas Schedl

Ligue Contre le Cancer (equipe labelisée 2018)

  • Andreas Schedl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was conducted according to national and international guidelines and was approved by the local ethics committee (PEA-NCE/2013/88).

Copyright

© 2021, Da Silva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,646
    views
  • 289
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabio Da Silva
  2. Fariba Jian Motamedi
  3. Lahiru Chamara Weerasinghe Arachchige
  4. Amelie Tison
  5. Stephen T Bradford
  6. Jonathan Lefebvre
  7. Pascal Dolle
  8. Norbert B Ghyselinck
  9. Kay D Wagner
  10. Andreas Schedl
(2021)
Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction
eLife 10:e68280.
https://doi.org/10.7554/eLife.68280

Share this article

https://doi.org/10.7554/eLife.68280

Further reading

    1. Developmental Biology
    Shuo Chao, Jun Lu ... Zhao-Jia Ge
    Research Article

    Maternal obesity has deleterious effects on the process of establishing oocyte DNA methylation; yet the underlying mechanisms remain unclear. Here, we found that maternal obesity disrupted the genomic methylation of oocytes using a high-fat diet (HFD) induced mouse model, at least a part of which was transmitted to the F2 oocytes and livers via females. We further examined the metabolome of serum and found that the serum concentration of melatonin was reduced. Exogenous melatonin treatment significantly reduced the hyper-methylation of HFD oocytes, and the increased expression of DNMT3a and DNMT1 in HFD oocytes was also decreased. These suggest that melatonin may play a key role in the disrupted genomic methylation in the oocytes of obese mice. To address how melatonin regulates the expression of DNMTs, the function of melatonin was inhibited or activated upon oocytes. Results revealed that melatonin may regulate the expression of DNMTs via the cAMP/PKA/CREB pathway. These results suggest that maternal obesity induces genomic methylation alterations in oocytes, which can be partly transmitted to F2 in females, and that melatonin is involved in regulating the hyper-methylation of HFD oocytes by increasing the expression of DNMTs via the cAMP/PKA/CREB pathway.

    1. Developmental Biology
    2. Neuroscience
    Denise M Poltavski, Alexander T Cunha ... Takako Makita
    Research Article

    Two major ligand-receptor signaling axes – endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret – are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates. Both Cre lines result in Hirschsprung disease when combined with conditional Ednrb or conditional Ret alleles. In vitro explant assays and analysis of lineage-labeled mutant embryos show that GDNF but not Edn3 is a migration cue for cells of both lineages. Instead, Edn3-Ednrb function is required in both for GDNF responsiveness albeit in different ways: by expanding the Ret+ population in the Pax2Cre lineage, and by supporting Ret function in Wnt1Cre-derived cells. Our results demonstrate that two distinct lineages of progenitors give rise to the ENS, and that these divergently utilize endothelin signaling to support migration to the hindgut.