Author-sourced capture of pathway knowledge in computable form using Biofactoid

  1. Jeffrey V Wong  Is a corresponding author
  2. Max Franz
  3. Metin Can Siper
  4. Dylan Fong
  5. Funda Durupinar
  6. Christian Dallago
  7. Augustin Luna
  8. John M Giorgi
  9. Igor Rodchenkov
  10. Özgün Babur
  11. John A Bachman
  12. Benjamin Gyori
  13. Emek Demir  Is a corresponding author
  14. Gary D Bader  Is a corresponding author
  15. Chris Sander  Is a corresponding author
  1. University of Toronto, Canada
  2. Oregon Health and Science University, United States
  3. University of Massachusetts Boston, United States
  4. Technische Universität München, Germany
  5. Dana-Farber Cancer Institute, United States
  6. Harvard University, United States

Abstract

Making the knowledge contained in scientific papers machine-readable and formally computable would allow researchers to take full advantage of this information by enabling integration with other knowledge sources to support data analysis and interpretation. Here we describe Biofactoid, a web-based platform that allows scientists to specify networks of interactions between genes, their products, and chemical compounds, and then translates this information into a representation suitable for computational analysis, search and discovery. We also report the results of a pilot study to encourage the wide adoption of Biofactoid by the scientific community.

Data availability

All Biofactoid data are available under the Creative Commons CC0 public domain license. To download the data and code, please refer to the documentation on the Biofactoid GitHub repository (github.com/PathwayCommons/factoid). More information on software availability is available in Materials and methods.

Article and author information

Author details

  1. Jeffrey V Wong

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    jeffvin.wong@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8912-5699
  2. Max Franz

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-0480
  3. Metin Can Siper

    Computational Biology Program, Oregon Health and Science University, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7556-093X
  4. Dylan Fong

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Funda Durupinar

    Computer Science Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4915-6642
  6. Christian Dallago

    Department of Informatics, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4650-6181
  7. Augustin Luna

    Department of Data Sciences, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5709-371X
  8. John M Giorgi

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9621-5046
  9. Igor Rodchenkov

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Özgün Babur

    Computer Science Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0239-5259
  11. John A Bachman

    Laboratory of Systems Pharmacology, Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6095-2466
  12. Benjamin Gyori

    Laboratory of Systems Pharmacology, Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9439-5346
  13. Emek Demir

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    For correspondence
    demire@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3663-7113
  14. Gary D Bader

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    gary.bader@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0185-8861
  15. Chris Sander

    Department of Cell Biology, Harvard Medical School, Harvard University, Boston, United States
    For correspondence
    sander.research@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6059-6270

Funding

National Human Genome Research Institute (U41 HG006623)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

National Human Genome Research Institute (U41 HG003751)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

National Human Genome Research Institute (R01 HG009979)

  • Max Franz
  • Gary D Bader

National Institute of General Medical Sciences (P41 GM103504)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

Defense Advanced Research Projects Agency (Big Mechanism,ARO W911NF-14-C-0119)

  • Metin Can Siper
  • Funda Durupinar
  • Özgün Babur
  • John A Bachman
  • Benjamin Gyori
  • Emek Demir

Defense Advanced Research Projects Agency (Communicating with Computers,ARO W911NF-15-1-054)

  • Metin Can Siper
  • Funda Durupinar
  • Özgün Babur
  • John A Bachman
  • Benjamin Gyori
  • Emek Demir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants of user testing provided written consent to volunteer, have their testing sessions recorded and have quotes obtained in the session published.

Reviewing Editor

  1. Helena Pérez Valle, eLife, United Kingdom

Publication history

  1. Preprint posted: March 11, 2021 (view preprint)
  2. Received: March 11, 2021
  3. Accepted: December 2, 2021
  4. Accepted Manuscript published: December 3, 2021 (version 1)
  5. Version of Record published: December 17, 2021 (version 2)

Copyright

© 2021, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,072
    Page views
  • 74
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey V Wong
  2. Max Franz
  3. Metin Can Siper
  4. Dylan Fong
  5. Funda Durupinar
  6. Christian Dallago
  7. Augustin Luna
  8. John M Giorgi
  9. Igor Rodchenkov
  10. Özgün Babur
  11. John A Bachman
  12. Benjamin Gyori
  13. Emek Demir
  14. Gary D Bader
  15. Chris Sander
(2021)
Author-sourced capture of pathway knowledge in computable form using Biofactoid
eLife 10:e68292.
https://doi.org/10.7554/eLife.68292
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Aaron W Jurrjens, Marcus M Seldin ... Anna C Calkin
    Review Article

    Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.

    1. Computational and Systems Biology
    Theo Sanderson, Maxwell L Bileschi ... Lucy J Colwell
    Tools and Resources Updated

    Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we introduce ProteInfer, which instead employs deep convolutional neural networks to directly predict a variety of protein functions – Enzyme Commission (EC) numbers and Gene Ontology (GO) terms – directly from an unaligned amino acid sequence. This approach provides precise predictions which complement alignment-based methods, and the computational efficiency of a single neural network permits novel and lightweight software interfaces, which we demonstrate with an in-browser graphical interface for protein function prediction in which all computation is performed on the user’s personal computer with no data uploaded to remote servers. Moreover, these models place full-length amino acid sequences into a generalised functional space, facilitating downstream analysis and interpretation. To read the interactive version of this paper, please visit https://google-research.github.io/proteinfer/.