Author-sourced capture of pathway knowledge in computable form using Biofactoid

  1. Jeffrey V Wong  Is a corresponding author
  2. Max Franz
  3. Metin Can Siper
  4. Dylan Fong
  5. Funda Durupinar
  6. Christian Dallago
  7. Augustin Luna
  8. John M Giorgi
  9. Igor Rodchenkov
  10. Özgün Babur
  11. John A Bachman
  12. Benjamin Gyori
  13. Emek Demir  Is a corresponding author
  14. Gary D Bader  Is a corresponding author
  15. Chris Sander  Is a corresponding author
  1. University of Toronto, Canada
  2. Oregon Health and Science University, United States
  3. University of Massachusetts Boston, United States
  4. Technische Universität München, Germany
  5. Dana-Farber Cancer Institute, United States
  6. Harvard University, United States

Abstract

Making the knowledge contained in scientific papers machine-readable and formally computable would allow researchers to take full advantage of this information by enabling integration with other knowledge sources to support data analysis and interpretation. Here we describe Biofactoid, a web-based platform that allows scientists to specify networks of interactions between genes, their products, and chemical compounds, and then translates this information into a representation suitable for computational analysis, search and discovery. We also report the results of a pilot study to encourage the wide adoption of Biofactoid by the scientific community.

Data availability

All Biofactoid data are available under the Creative Commons CC0 public domain license. To download the data and code, please refer to the documentation on the Biofactoid GitHub repository (github.com/PathwayCommons/factoid). More information on software availability is available in Materials and methods.

Article and author information

Author details

  1. Jeffrey V Wong

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    jeffvin.wong@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8912-5699
  2. Max Franz

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0169-0480
  3. Metin Can Siper

    Computational Biology Program, Oregon Health and Science University, Oregon, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7556-093X
  4. Dylan Fong

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Funda Durupinar

    Computer Science Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4915-6642
  6. Christian Dallago

    Department of Informatics, Technische Universität München, Garching, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4650-6181
  7. Augustin Luna

    Department of Data Sciences, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5709-371X
  8. John M Giorgi

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9621-5046
  9. Igor Rodchenkov

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Özgün Babur

    Computer Science Department, University of Massachusetts Boston, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0239-5259
  11. John A Bachman

    Laboratory of Systems Pharmacology, Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6095-2466
  12. Benjamin Gyori

    Laboratory of Systems Pharmacology, Harvard Medical School, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9439-5346
  13. Emek Demir

    Computational Biology Program, Oregon Health and Science University, Portland, United States
    For correspondence
    demire@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3663-7113
  14. Gary D Bader

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    gary.bader@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0185-8861
  15. Chris Sander

    Department of Cell Biology, Harvard Medical School, Harvard University, Boston, United States
    For correspondence
    sander.research@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6059-6270

Funding

National Human Genome Research Institute (U41 HG006623)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

National Human Genome Research Institute (U41 HG003751)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

National Human Genome Research Institute (R01 HG009979)

  • Max Franz
  • Gary D Bader

National Institute of General Medical Sciences (P41 GM103504)

  • Jeffrey V Wong
  • Max Franz
  • Metin Can Siper
  • Dylan Fong
  • Funda Durupinar
  • Christian Dallago
  • Augustin Luna
  • John M Giorgi
  • Igor Rodchenkov
  • Özgün Babur
  • Emek Demir
  • Gary D Bader
  • Chris Sander

Defense Advanced Research Projects Agency (Big Mechanism,ARO W911NF-14-C-0119)

  • Metin Can Siper
  • Funda Durupinar
  • Özgün Babur
  • John A Bachman
  • Benjamin Gyori
  • Emek Demir

Defense Advanced Research Projects Agency (Communicating with Computers,ARO W911NF-15-1-054)

  • Metin Can Siper
  • Funda Durupinar
  • Özgün Babur
  • John A Bachman
  • Benjamin Gyori
  • Emek Demir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants of user testing provided written consent to volunteer, have their testing sessions recorded and have quotes obtained in the session published.

Reviewing Editor

  1. Helena Pérez Valle, eLife, United Kingdom

Publication history

  1. Preprint posted: March 11, 2021 (view preprint)
  2. Received: March 11, 2021
  3. Accepted: December 2, 2021
  4. Accepted Manuscript published: December 3, 2021 (version 1)
  5. Version of Record published: December 17, 2021 (version 2)

Copyright

© 2021, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    Page views
  • 83
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeffrey V Wong
  2. Max Franz
  3. Metin Can Siper
  4. Dylan Fong
  5. Funda Durupinar
  6. Christian Dallago
  7. Augustin Luna
  8. John M Giorgi
  9. Igor Rodchenkov
  10. Özgün Babur
  11. John A Bachman
  12. Benjamin Gyori
  13. Emek Demir
  14. Gary D Bader
  15. Chris Sander
(2021)
Author-sourced capture of pathway knowledge in computable form using Biofactoid
eLife 10:e68292.
https://doi.org/10.7554/eLife.68292

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Megan E Kelley, Adi Y Berman ... Gregory P Way
    Research Article

    Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.

    1. Computational and Systems Biology
    Barbara Bravi, Andrea Di Gioacchino ... Rémi Monasson
    Research Article Updated

    Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.