Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel

  1. Cathrine Bergh
  2. Stephanie A Heusser
  3. Rebecca Howard
  4. Erik Lindahl  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Copenhagen, Denmark
  3. Stockholm University, Sweden

Abstract

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.

Data availability

Additional data including simulation parameters and sampled conformations from the MSMs can be accessed at doi:10.5281/zenodo.4594193.

Article and author information

Author details

  1. Cathrine Bergh

    Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7540-5887
  2. Stephanie A Heusser

    Drug Design & Pharmacology, University of Copenhagen, Copehagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3224-4547
  3. Rebecca Howard

    Drug Design & Pharmacology, University of Copenhagen, Copehagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Erik Lindahl

    Stockholm University, Stockholm, Sweden
    For correspondence
    erik.lindahl@dbb.su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2734-2794

Funding

Knut och Alice Wallenbergs Stiftelse

  • Erik Lindahl

Vetenskapsrådet (2017-04641)

  • Erik Lindahl

Vetenskapsrådet (2018-06479)

  • Erik Lindahl

Vetenskapsrådet (2019-02433)

  • Erik Lindahl

Swedish e-Science Research Centre

  • Rebecca Howard
  • Erik Lindahl

European Union Horizon 2020 (BioExcel (823830))

  • Erik Lindahl

Swedish National Infrastructure for Computing

  • Erik Lindahl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Toby W Allen, RMIT University, Australia

Version history

  1. Preprint posted: March 12, 2021 (view preprint)
  2. Received: March 13, 2021
  3. Accepted: October 14, 2021
  4. Accepted Manuscript published: October 15, 2021 (version 1)
  5. Version of Record published: December 1, 2021 (version 2)

Copyright

© 2021, Bergh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,809
    views
  • 226
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cathrine Bergh
  2. Stephanie A Heusser
  3. Rebecca Howard
  4. Erik Lindahl
(2021)
Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
eLife 10:e68369.
https://doi.org/10.7554/eLife.68369

Share this article

https://doi.org/10.7554/eLife.68369

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.