Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel

  1. Cathrine Bergh
  2. Stephanie A Heusser
  3. Rebecca Howard
  4. Erik Lindahl  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Copenhagen, Denmark
  3. Stockholm University, Sweden

Abstract

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.

Data availability

Additional data including simulation parameters and sampled conformations from the MSMs can be accessed at doi:10.5281/zenodo.4594193.

Article and author information

Author details

  1. Cathrine Bergh

    Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7540-5887
  2. Stephanie A Heusser

    Drug Design & Pharmacology, University of Copenhagen, Copehagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3224-4547
  3. Rebecca Howard

    Drug Design & Pharmacology, University of Copenhagen, Copehagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Erik Lindahl

    Stockholm University, Stockholm, Sweden
    For correspondence
    erik.lindahl@dbb.su.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2734-2794

Funding

Knut och Alice Wallenbergs Stiftelse

  • Erik Lindahl

Vetenskapsrådet (2017-04641)

  • Erik Lindahl

Vetenskapsrådet (2018-06479)

  • Erik Lindahl

Vetenskapsrådet (2019-02433)

  • Erik Lindahl

Swedish e-Science Research Centre

  • Rebecca Howard
  • Erik Lindahl

European Union Horizon 2020 (BioExcel (823830))

  • Erik Lindahl

Swedish National Infrastructure for Computing

  • Erik Lindahl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bergh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,974
    views
  • 244
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cathrine Bergh
  2. Stephanie A Heusser
  3. Rebecca Howard
  4. Erik Lindahl
(2021)
Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
eLife 10:e68369.
https://doi.org/10.7554/eLife.68369

Share this article

https://doi.org/10.7554/eLife.68369

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Computational and Systems Biology
    2. Ecology
    Lenore Pipes, Rasmus Nielsen
    Tools and Resources

    Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. It has long been known that full probabilistic methods for phylogenetic assignment are preferable, but unfortunately, such methods are computationally intensive and are typically inapplicable to modern Next-Generation Sequencing data. We here present a fast approximate likelihood method for phylogenetic assignment of DNA sequences. Applying the new method to several mock communities and simulated datasets, we show that it identifies more reads at both high and low taxonomic levels more accurately than other leading methods. The advantage of the method is particularly apparent in the presence of polymorphisms and/or sequencing errors and when the true species is not represented in the reference database.