PBN-PVT projections modulate negative affective states in mice

  1. Ya-Bing Zhu
  2. Yan Wang
  3. Xiao-Xiao Hua
  4. Ling Xu
  5. Ming-Zhe Liu
  6. Rui Zhang
  7. Peng-Fei Liu
  8. Jin-Bao Li
  9. Ling Zhang  Is a corresponding author
  10. Di Mu  Is a corresponding author
  1. Shanghai Jiao Tong University School of Medicine, China
  2. Tongji University School of Medicine, China
  3. The First Affiliated Hospital of Guangzhou Medical University, China

Abstract

Long-lasting negative affections dampen enthusiasm for life, and dealing with negative affective states is essential for individual survival. The parabrachial nucleus (PBN) and thalamic paraventricular nucleus (PVT) are critical for modulating affective states in mice. However, the functional roles of PBN-PVT projections in modulating affective states remain elusive. Here, we show that PBN neurons send dense projection fibers to the PVT and form direct excitatory synapses with PVT neurons. Activation of the PBN-PVT pathway induces robust behaviors associated with negative affective states without affecting nociceptive behaviors. Inhibition of the PBN-PVT pathway reduces aversion-like and fear-like behaviors. Furthermore, the PVT neurons innervated by the PBN are activated by aversive stimulation, and activation of PBN-PVT projections enhances the neuronal activity of PVT neurons in response to the aversive stimulus. Consistently, activation of PVT neurons that received PBN-PVT projections induces anxiety-like behaviors. Thus, our study indicates that PBN-PVT projections modulate negative affective states in mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. The behavioral data and imaging analysis results have been made available on Dryad Digital Repository (https://doi:10.5061/dryad.1rn8pk0w4). All MATLAB code has been deposited at: https://github.com/laizishangalali/Xiang/blob/main/zscore_KS_test.m and is publicly available.

The following data sets were generated

Article and author information

Author details

  1. Ya-Bing Zhu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yan Wang

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiao-Xiao Hua

    Tongji University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ling Xu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ming-Zhe Liu

    Department of Respiratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Zhang

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Peng-Fei Liu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin-Bao Li

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ling Zhang

    Tongji University School of Medicine, Shanghai, China
    For correspondence
    lzhang0808@tongji.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Di Mu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    For correspondence
    damonmu@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1209-9311

Funding

National Natural Science Foundation of China (31900717)

  • Di Mu

China Association for Science and Technology (2019QNRC001)

  • Di Mu

Shanghai Association for Science and Technology (19YF1438700)

  • Di Mu

National Natural Science Foundation of China (31571086)

  • Ling Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiment procedures were approved by the Animal Care and Use Committee of Shanghai General Hospital (2019AW008).

Copyright

© 2022, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,595
    views
  • 573
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ya-Bing Zhu
  2. Yan Wang
  3. Xiao-Xiao Hua
  4. Ling Xu
  5. Ming-Zhe Liu
  6. Rui Zhang
  7. Peng-Fei Liu
  8. Jin-Bao Li
  9. Ling Zhang
  10. Di Mu
(2022)
PBN-PVT projections modulate negative affective states in mice
eLife 11:e68372.
https://doi.org/10.7554/eLife.68372

Share this article

https://doi.org/10.7554/eLife.68372

Further reading

    1. Neuroscience
    Takashi Yamamoto, Kayoko Ueji ... Shinya Ugawa
    Research Article

    The concept of ‘kokumi’, which refers to an enhanced and more delicious flavor of food, has recently generated considerable interest in food science. However, kokumi has not been well studied in gustatory physiology, and the underlying neuroscientific mechanisms remain largely unexplored. Our previous research demonstrated that ornithine (L-ornithine), which is abundant in shijimi clams, enhanced taste preferences in mice. The present study aimed to build on these findings and investigate the mechanisms responsible for kokumi in rats. In two-bottle preference tests, the addition of ornithine, at a low concentration that did not increase the favorability of this substance alone, enhanced the animals’ preferences for umami, sweet, fatty, salty, and bitter solutions, with the intake of monosodium glutamate showing the most significant increase. Additionally, a mixture of umami and ornithine synergistically induced significant responses in the chorda tympani nerve, which transmits taste information to the brain from the anterior part of the tongue. The observed preference enhancement and increase in taste-nerve response were abolished by antagonists of the G-protein-coupled receptor family C group 6 subtype A (GPRC6A). Furthermore, immunohistochemical analysis indicated that GPRC6A was expressed in a subset of type II taste cells in rat fungiform papillae. These results provide new insights into flavor-enhancement mechanisms, confirming that ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor.

    1. Neuroscience
    Samuel Noorman, Timo Stein ... Simon van Gaal
    Research Article

    This study investigates failures in conscious access resulting from either weak sensory input (perceptual impairments) or unattended input (attentional impairments). Participants viewed a Kanizsa stimulus with or without an illusory triangle within a rapid serial visual presentation of distractor stimuli. We designed a novel Kanizsa stimulus that contained additional ancillary features of different complexity (local contrast and collinearity) that were independently manipulated. Perceptual performance on the Kanizsa stimulus (presence vs. absence of an illusion) was equated between the perceptual (masking) and attentional (attentional blink) manipulation to circumvent common confounds related to conditional differences in task performance. We trained and tested classifiers on electroencephalogram (EEG) data to reflect the processing of specific stimulus features, with increasing levels of complexity. We show that late stages of processing (~200–250 ms), reflecting the integration of complex stimulus features (collinearity, illusory triangle), were impaired by masking but spared by the attentional blink. In contrast, decoding of local contrast (the spatial arrangement of stimulus features) was observed early in time (~80 ms) and was left largely unaffected by either manipulation. These results replicate previous work showing that feedforward processing is largely preserved under both perceptual and attentional impairments. Crucially, however, under matched levels of performance, only attentional impairments left the processing of more complex visual features relatively intact, likely related to spared lateral and local feedback processes during inattention. These findings reveal distinct neural mechanisms associated with perceptual and attentional impairments and thus contribute to a comprehensive understanding of distinct neural stages leading to conscious access.