Similar neural and perceptual masking effects of low-power optogenetic stimulation in primate V1
Abstract
Can direct stimulation of primate V1 substitute for a visual stimulus and mimic its perceptual effect? To address this question, we developed an optical-genetic toolkit to 'read' neural population responses using widefield calcium imaging, while simultaneously using optogenetics to 'write' neural responses into V1 of behaving macaques. We focused on the phenomenon of visual masking, where detection of a dim target is significantly reduced by a co-localized medium-brightness mask [1, 2]. Using our toolkit, we tested whether V1 optogenetic stimulation can recapitulate the perceptual masking effect of a visual mask. We find that, similar to a visual mask, low-power optostimulation can significantly reduce visual detection sensitivity, that a sublinear interaction between visual and optogenetic evoked V1 responses could account for this perceptual effect, and that these neural and behavioral effects are spatially selective. Our toolkit and results open the door for further exploration of perceptual substitutions by direct stimulation of sensory cortex.
Data availability
The data and Matlab code for visualization are available on Dryad Digital Repository, doi:10.5061/dryad.00000003h.
-
Data from: Similar neural and perceptual masking effects of low-power optogenetic stimulation in primate V1Dryad Digital Repository, doi:10.5061/dryad.00000003h.
Article and author information
Author details
Funding
NIH Blueprint for Neuroscience Research (EY-016454)
- Eyal Seidemann
NIH Blueprint for Neuroscience Research (EY-024662)
- Wilson S Geisler
NIH Blueprint for Neuroscience Research (BRAIN U01-NS099720)
- Wilson S Geisler
- Eyal Seidemann
DARPA-NESD (N66001-17-C-4012)
- Eyal Seidemann
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures have been approved by the University of Texas Institutional Animal Care and Use Committee (IACUC protocol #AUP-2016-00274) and conform to NIH standards.
Copyright
© 2022, Chen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,519
- views
-
- 219
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.