Fine-tuned repression of Drp1 driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation

Abstract

Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks'; level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.

Data availability

Details pertaining to the sc-RNAseq experiment are available as Supplementary data Tables 1, 2, 3. Raw, analyzed and meta data are available in Gene expression omnibus (GEO GSE171772).

The following data sets were generated

Article and author information

Author details

  1. Brian Spurlock

    Genetics, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9757-4494
  2. Danitra Parker

    Genetics, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Malay Kumar Basu

    Pathology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Hjelmeland

    Pathology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sajina GC

    Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2676-2794
  6. Shanrun Liu

    Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gene P Siegal

    Pathology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alan Gunter

    Genetics, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aida Moran

    Genetics, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kasturi Mitra

    Genetics, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    kasturi@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3718-7094

Funding

National Institute of Environmental Health Sciences (R33ES025662)

  • Kasturi Mitra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IACUC-21347) of the University of Alabama at Birmingham. All mice were be examined daily, and were euthanized by CO2 inhalation, and death confirmed by cervical dislocation, as approved by the IACUC protocol.

Version history

  1. Preprint posted: March 5, 2021 (view preprint)
  2. Received: March 15, 2021
  3. Accepted: September 8, 2021
  4. Accepted Manuscript published: September 21, 2021 (version 1)
  5. Version of Record published: October 7, 2021 (version 2)

Copyright

© 2021, Spurlock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,603
    views
  • 313
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Spurlock
  2. Danitra Parker
  3. Malay Kumar Basu
  4. Anita Hjelmeland
  5. Sajina GC
  6. Shanrun Liu
  7. Gene P Siegal
  8. Alan Gunter
  9. Aida Moran
  10. Kasturi Mitra
(2021)
Fine-tuned repression of Drp1 driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation
eLife 10:e68394.
https://doi.org/10.7554/eLife.68394

Share this article

https://doi.org/10.7554/eLife.68394

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Jose Mario Bello Pineda, Robert K Bradley
    Research Article

    Cancer immune evasion contributes to checkpoint immunotherapy failure in many patients with metastatic cancers. The embryonic transcription factor DUX4 was recently characterized as a suppressor of interferon-γ signaling and antigen presentation that is aberrantly expressed in a small subset of primary tumors. Here, we report that DUX4 expression is a common feature of metastatic tumors, with ~10–50% of advanced bladder, breast, kidney, prostate, and skin cancers expressing DUX4. DUX4 expression is significantly associated with immune cell exclusion and decreased objective response to PD-L1 blockade in a large cohort of urothelial carcinoma patients. DUX4 expression is a significant predictor of survival even after accounting for tumor mutational burden and other molecular and clinical features in this cohort, with DUX4 expression associated with a median reduction in survival of over 1 year. Our data motivate future attempts to develop DUX4 as a biomarker and therapeutic target for checkpoint immunotherapy resistance.

    1. Cancer Biology
    2. Cell Biology
    Helmut Bischof, Selina Maier ... Robert Lukowski
    Research Article

    Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the ‘Warburg effect’, thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.