Abstract

Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small Membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics (MD) simulations. Models contained a predicted lumenal rimantadine binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted-therapies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; access to MD data and molecular models may be requested and, if accepted, accessed via MTA. Raw simulation data can be accessed via the Leeds Data Repository (https://archive.researchdata.leeds.ac.uk/) at the following DOI: https://doi.org/10.5518/1505

The following data sets were generated

Article and author information

Author details

  1. Emma Brown

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Gemma Swinscoe

    School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniella A Lefteri

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9985-4254
  4. Ravi Singh

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4344-4085
  5. Amy Moran

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca F Thompson

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Maskell

    School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Hannah Beaumont

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew J Bentham

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Claire Donald

    Institute of infection, immunity and inflammation, MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Alain Kohl

    Institute of infection, immunity and inflammation, MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Andrew Macdonald

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Neil A Ranson

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Richard Foster

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Clive S McKimmie

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Antreas C Kalli

    Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7156-9403
  17. Stephen Griffin

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    For correspondence
    s.d.c.griffin@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7233-5243

Funding

Medical Research Council (G0700124)

  • Matthew J Bentham
  • Stephen Griffin

University of Leeds (LIMR Studentship)

  • Emma Brown
  • Richard Foster
  • Clive S McKimmie
  • Antreas C Kalli
  • Stephen Griffin

Medical Research Council (MC_UU_12014/8)

  • Claire Donald
  • Alain Kohl

Medical Research Council (MR/N017552/1)

  • Claire Donald
  • Alain Kohl

University of Leeds (LIMR Studentship)

  • Daniella A Lefteri
  • Clive S McKimmie
  • Stephen Griffin

Medical Research Council (MR/T016205/1)

  • Amy Moran
  • Stephen Griffin

UK Research and Innovation (Impact Acceleration Account ( IAA))

  • Gemma Swinscoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were carried out in accordance with the United Kingdom Home Office regulations under the authority of the appropriate project and personal license (awarded to CSM, and CSM/DL respectively).

Copyright

© 2024, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 544
    views
  • 128
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma Brown
  2. Gemma Swinscoe
  3. Daniella A Lefteri
  4. Ravi Singh
  5. Amy Moran
  6. Rebecca F Thompson
  7. Daniel Maskell
  8. Hannah Beaumont
  9. Matthew J Bentham
  10. Claire Donald
  11. Alain Kohl
  12. Andrew Macdonald
  13. Neil A Ranson
  14. Richard Foster
  15. Clive S McKimmie
  16. Antreas C Kalli
  17. Stephen Griffin
(2024)
Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection
eLife 13:e68404.
https://doi.org/10.7554/eLife.68404

Share this article

https://doi.org/10.7554/eLife.68404

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.