1. Developmental Biology
Download icon

Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development

Research Article
  • Cited 1
  • Views 2,110
  • Annotations
Cite this article as: eLife 2021;10:e68536 doi: 10.7554/eLife.68536

Abstract

During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavages divisions, morphogenetic movements and lineage specification. Recent studies identified the essential role of actomyosin contractility in driving the cytokinesis, morphogenesis and fate specification leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHC) to characterize them with multiscale imaging. We find that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most attempts of cytokinesis. We find that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.

Data availability

The microscopy data, ROI and analyses are available on the following repository under a CC BY- NC-SA license: https://ressources.curie.fr/mzmyh/

The following previously published data sets were used

Article and author information

Author details

  1. Markus Frederik Schliffka

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    Markus Frederik Schliffka, M.F.S. is employed by Carl Zeiss SAS via a public PhD programme Conventions Industrielles de Formation par la Recherche (CIFRE) co-funded by the Association Nationale de la Recherche et de la Technologie (ANRT)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5128-1653
  2. Anna-Francesca Tortorelli

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9995-9582
  3. Özge Özgüç

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1545-1715
  4. Ludmilla de Plater

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0982-5960
  5. Oliver Polzer

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4970-6058
  6. Diane Pelzer

    Genetics and developmental biology unit, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6906-2451
  7. Jean-Léon Maître

    Genetics and developmental biology unit, Institut Curie, Paris, France
    For correspondence
    jean-leon.maitre@curie.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3688-1474

Funding

Institut des sciences biologiques

  • Diane Pelzer

Agence Nationale de la Recherche (ANR-11-LABX-0044)

  • Jean-Léon Maître

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02)

  • Jean-Léon Maître

Association Nationale de la Recherche et de la Technologie (2019/0253)

  • Markus Frederik Schliffka

H2020 Marie Skłodowska-Curie Actions (666003)

  • Özge Özgüç

Institut National de la Santé et de la Recherche Médicale

  • Jean-Léon Maître

Fondation pour la Recherche Médicale

  • Özge Özgüç

Fondation Schlumberger pour l'Education et la Recherche

  • Jean-Léon Maître

H2020 European Research Council (ERC-2017-StG 757557)

  • Jean-Léon Maître

European Molecular Biology Organisation

  • Jean-Léon Maître

Université de Recherche Paris Sciences et Lettres (17-CONV-0005)

  • Jean-Léon Maître

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work is performed in the animal facility at the Institut Curie, with permission by the institutional veterinarian overseeing the operation (APAFIS #11054- 2017082914226001). The animal facilities are operated according to international animal welfare rules.

Reviewing Editor

  1. Edward E Morrisey, University of Pennsylvania, United States

Publication history

  1. Received: March 18, 2021
  2. Accepted: March 28, 2021
  3. Accepted Manuscript published: April 19, 2021 (version 1)
  4. Version of Record published: May 4, 2021 (version 2)

Copyright

© 2021, Schliffka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,110
    Page views
  • 174
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Tom Dierschke et al.
    Research Article

    Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular Chlorophyte alga Chlamydomonas KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.

    1. Developmental Biology
    2. Neuroscience
    Lukas Klimmasch et al.
    Research Article Updated

    The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.