The dual role of amyloid β-sheet interaction sequences in the cell surface properties of FLO11-encoded flocculins in the yeast Saccharomyces cerevisiae

Abstract

Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans- interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.

Data availability

The raw dataset has been deposited to Dryad and is accessible at https:/doi.org/10/10.5061/dryad.v41ns1rvvThe sequence of the FLO11 gene from the industrial strain used in this study has been deposited at NCBI under the provisional reference number Banklt246107 Seq1MW448340)

The following data sets were generated

Article and author information

Author details

  1. Clara Bouyx

    Toulouse Biotechnology Institute, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marion Schiavone

    Toulouse Biotechnology Institute, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marie-Ange Teste

    Toulouse Biotechnology Institute, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9173-9190
  4. Etienne Dague

    LAAS, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Nathalie Sieczkowski

    Lallemand, Lallemand SAS, Blagnac, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Julien

    Lallemand, Lallemand SAS, Blagnac, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean Marie François

    Toulouse Biotechnology Institute, INSA, Toulouse, France
    For correspondence
    fran_jm@insa-toulouse.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9884-5535

Funding

Region Occitanie (n{degree sign}09003813)

  • Jean Marie François

Lallemand SAS (SAIC2016/048 and SAIC 2018/010)

  • Jean Marie François

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bouyx et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 773
    views
  • 116
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clara Bouyx
  2. Marion Schiavone
  3. Marie-Ange Teste
  4. Etienne Dague
  5. Nathalie Sieczkowski
  6. Anne Julien
  7. Jean Marie François
(2021)
The dual role of amyloid β-sheet interaction sequences in the cell surface properties of FLO11-encoded flocculins in the yeast Saccharomyces cerevisiae
eLife 10:e68592.
https://doi.org/10.7554/eLife.68592

Share this article

https://doi.org/10.7554/eLife.68592

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.