Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during phagocytosis

  1. Daan Vorselen
  2. Sarah R Barger
  3. Yifan Wang
  4. Wei Cai
  5. Julie A Theriot
  6. Nils C Gauthier
  7. Mira Krendel  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Washington, United States
  2. Yale University, United States
  3. Stanford University, United States
  4. IFOM, Italy
  5. SUNY Upstate Medical University, United States

Abstract

Phagocytosis requires rapid actin reorganization and spatially controlled force generation to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity directs membrane extensions to engulf such diverse targets remains unclear. Here, we combine lattice light-sheet microscopy (LLSM) with microparticle traction force microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during macrophage phagocytosis. We show that spatially localized forces leading to target constriction are prominent during phagocytosis of antibody-opsonized targets. This constriction is largely driven by Arp2/3-mediated assembly of discrete actin protrusions containing myosin 1e and 1f ('teeth') that appear to be interconnected in a ring-like organization. Contractile myosin-II activity contributes to late-stage phagocytic force generation and progression, supporting a specific role in phagocytic cup closure. Observations of partial target eating attempts and sudden target release via a popping mechanism suggest that constriction may be critical for resolving complex in vivo target encounters. Overall, our findings present a phagocytic cup-shaping mechanism that is distinct from cytoskeletal remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic plasticity.

Data availability

All quantitative data generated or analysed during this study are included in the manuscript and supporting files. Source Data files contain all numerical data to generate the figures. All confocal image data is available on FigShare repositories (DOI: 10.6084/m9.figshare.16666864 and DOI: 10.6084/m9.figshare.16677373).

Article and author information

Author details

  1. Daan Vorselen

    Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah R Barger

    Molecular, Cellular, Developmental Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yifan Wang

    Department of Mechanical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Cai

    Department of Mechanical Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie A Theriot

    Biology, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2334-2535
  6. Nils C Gauthier

    IFOM, IFOM, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Mira Krendel

    Cell Developmental Biology, SUNY Upstate Medical University, Syracuse, United States
    For correspondence
    krendelm@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7008-9069

Funding

American Heart Association (Predoctoral fellowship 18PRE34070066)

  • Sarah R Barger

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK083345)

  • Mira Krendel

Associazione Italiana per la Ricerca sul Cancro (Investigator Grant 20716)

  • Nils C Gauthier

Howard Hughes Medical Institute

  • Julie A Theriot

Cancer Research Institute (CRI Irvington fellowship)

  • Daan Vorselen

National Institute of General Medical Sciences (R01GM138652)

  • Mira Krendel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in compliance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures utilizing mice were performed according to the animal protocol (IACUC# 364) approved by the IACUC of SUNY Upstate Medical University and in compliance with all applicable ethical regulations.

Copyright

© 2021, Vorselen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,262
    views
  • 538
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daan Vorselen
  2. Sarah R Barger
  3. Yifan Wang
  4. Wei Cai
  5. Julie A Theriot
  6. Nils C Gauthier
  7. Mira Krendel
(2021)
Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during phagocytosis
eLife 10:e68627.
https://doi.org/10.7554/eLife.68627

Share this article

https://doi.org/10.7554/eLife.68627

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.