Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila

  1. Amicia D Elliott
  2. Adama Berndt
  3. Matthew Houpert
  4. Snehashis Roy
  5. Robert L Scott
  6. Carson C Chow
  7. Hari Shroff
  8. Benjamin H White  Is a corresponding author
  1. National Institute of General Medical Sciences, United States
  2. National Institute of Mental Health, United States
  3. National Institutes of Health, United States
  4. National Institute of Biomedical Imaging and Bioengineering, United States

Abstract

Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution.

Data availability

The source data for the figures and tables in this study are available at figshare (https://figshare.com/collections/Pupal_behavior_emerges_from_unstructured_muscle_activity_in_response_to_neuromodulation_in_Drosophila/5489637) and computer code is posted to https://github.com/BenjaminHWhite.

The following data sets were generated

Article and author information

Author details

  1. Amicia D Elliott

    National Institute of General Medical Sciences, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adama Berndt

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Houpert

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Snehashis Roy

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert L Scott

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carson C Chow

    National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1463-9553
  7. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin H White

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    For correspondence
    benjaminwhite@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0612-8075

Funding

National Institute of General Medical Sciences (F12-GM117582)

  • Amicia D Elliott

National Institute of Mental Health (ZIA-MH002800)

  • Benjamin H White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,467
    views
  • 257
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amicia D Elliott
  2. Adama Berndt
  3. Matthew Houpert
  4. Snehashis Roy
  5. Robert L Scott
  6. Carson C Chow
  7. Hari Shroff
  8. Benjamin H White
(2021)
Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila
eLife 10:e68656.
https://doi.org/10.7554/eLife.68656

Share this article

https://doi.org/10.7554/eLife.68656

Further reading

    1. Neuroscience
    Geoffrey W Meissner, Allison Vannan ... FlyLight Project Team
    Research Article

    Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.

    1. Neuroscience
    Hyun Jee Lee, Jingting Liang ... Hang Lu
    Research Advance

    Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in Caenorhabditis elegans whole-brain images (Chaudhary et al., 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advancement, CRF_ID 2.0, that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high-accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.