1. Neuroscience
Download icon

Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in Drosophila

  1. Amicia D Elliott
  2. Adama Berndt
  3. Matthew Houpert
  4. Snehashis Roy
  5. Robert L Scott
  6. Carson C Chow
  7. Hari Shroff
  8. Benjamin H White  Is a corresponding author
  1. National Institute of General Medical Sciences, United States
  2. National Institute of Mental Health, United States
  3. National Institutes of Health, United States
  4. National Institute of Biomedical Imaging and Bioengineering, United States
Research Article
  • Cited 0
  • Views 437
  • Annotations
Cite this article as: eLife 2021;10:e68656 doi: 10.7554/eLife.68656

Abstract

Identifying neural substrates of behavior requires defining actions in terms that map onto brain activity. Brain and muscle activity naturally correlate via the output of motor neurons, but apart from simple movements it has been difficult to define behavior in terms of muscle contractions. By mapping the musculature of the pupal fruit fly and comprehensively imaging muscle activation at single cell resolution, we here describe a multiphasic behavioral sequence in Drosophila. Our characterization identifies a previously undescribed behavioral phase and permits extraction of major movements by a convolutional neural network. We deconstruct movements into a syllabary of co-active muscles and identify specific syllables that are sensitive to neuromodulatory manipulations. We find that muscle activity shows considerable variability, with sequential increases in stereotypy dependent upon neuromodulation. Our work provides a platform for studying whole-animal behavior, quantifying its variability across multiple spatiotemporal scales, and analyzing its neuromodulatory regulation at cellular resolution.

Data availability

The source data for the figures and tables in this study are available at figshare (https://figshare.com/collections/Pupal_behavior_emerges_from_unstructured_muscle_activity_in_response_to_neuromodulation_in_Drosophila/5489637) and computer code is posted to https://github.com/BenjaminHWhite.

The following data sets were generated

Article and author information

Author details

  1. Amicia D Elliott

    National Institute of General Medical Sciences, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adama Berndt

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Houpert

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Snehashis Roy

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert L Scott

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carson C Chow

    National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1463-9553
  7. Hari Shroff

    National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin H White

    Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, United States
    For correspondence
    benjaminwhite@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0612-8075

Funding

National Institute of General Medical Sciences (F12-GM117582)

  • Amicia D Elliott

National Institute of Mental Health (ZIA-MH002800)

  • Benjamin H White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Chris Q Doe, Howard Hughes Medical Institute, University of Oregon, United States

Publication history

  1. Received: March 22, 2021
  2. Accepted: July 6, 2021
  3. Accepted Manuscript published: July 8, 2021 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 437
    Page views
  • 99
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Li Hou et al.
    Research Article Updated

    Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty-acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.

    1. Neuroscience
    Krishna N Badhiwala et al.
    Research Article

    Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra’s diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.