Src activates retrograde membrane traffic through phosphorylation of GBF1

  1. Joanne Chia  Is a corresponding author
  2. Shyi-Chyi Wang
  3. Sheena Wee
  4. David James Gill
  5. Felicia Tay
  6. Srinivasaraghavan Kannan
  7. Chandra S Verma
  8. Jayantha Gunaratne
  9. Frederic A Bard  Is a corresponding author
  1. Institute of Molecular and Cell Biology, Singapore
  2. Bioinformatics Institute, Singapore

Abstract

The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP Exchange factor (GEF) GBF1 and small GTPase Arf1. Here we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898 are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and wide-spread mechanism.

Data availability

Source data of western blots and all quantifications have been provided for all figures.

Article and author information

Author details

  1. Joanne Chia

    Institute of Molecular and Cell Biology, Singapore, Singapore
    For correspondence
    zhchia@imcb.a-star.edu.sg
    Competing interests
    No competing interests declared.
  2. Shyi-Chyi Wang

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Sheena Wee

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  4. David James Gill

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  5. Felicia Tay

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  6. Srinivasaraghavan Kannan

    Atomistic Simulations and Design in Biology, Bioinformatics Institute, Singapore, Singapore
    Competing interests
    No competing interests declared.
  7. Chandra S Verma

    Atomistic Simulations and Design in Biology, Bioinformatics Institute, Singapore, Singapore
    Competing interests
    No competing interests declared.
  8. Jayantha Gunaratne

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5377-6537
  9. Frederic A Bard

    Institute of Molecular and Cell Biology, Singapore, Singapore
    For correspondence
    fbard@imcb.a-star.edu.sg
    Competing interests
    Frederic A Bard, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3783-4805

Funding

Astar (Core fund)

  • Frederic A Bard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Version history

  1. Preprint posted: August 3, 2020 (view preprint)
  2. Received: March 23, 2021
  3. Accepted: December 5, 2021
  4. Accepted Manuscript published: December 6, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)

Copyright

© 2021, Chia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,041
    Page views
  • 185
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joanne Chia
  2. Shyi-Chyi Wang
  3. Sheena Wee
  4. David James Gill
  5. Felicia Tay
  6. Srinivasaraghavan Kannan
  7. Chandra S Verma
  8. Jayantha Gunaratne
  9. Frederic A Bard
(2021)
Src activates retrograde membrane traffic through phosphorylation of GBF1
eLife 10:e68678.
https://doi.org/10.7554/eLife.68678

Share this article

https://doi.org/10.7554/eLife.68678

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.