1. Cell Biology
Download icon

Src activates retrograde membrane traffic through phosphorylation of GBF1

  1. Joanne Chia  Is a corresponding author
  2. Shyi-Chyi Wang
  3. Sheena Wee
  4. David James Gill
  5. Felicia Tay
  6. Srinivasaraghavan Kannan
  7. Chandra S Verma
  8. Jayantha Gunaratne
  9. Frederic A Bard  Is a corresponding author
  1. Institute of Molecular and Cell Biology, Singapore
  2. Bioinformatics Institute, Singapore
Research Article
  • Cited 3
  • Views 611
  • Annotations
Cite this article as: eLife 2021;10:e68678 doi: 10.7554/eLife.68678

Abstract

The Src tyrosine kinase controls cancer-critical protein glycosylation through Golgi to ER relocation of GALNTs enzymes. How Src induces this trafficking event is unknown. Golgi to ER transport depends on the GTP Exchange factor (GEF) GBF1 and small GTPase Arf1. Here we show that Src induces the formation of tubular transport carriers containing GALNTs. The kinase phosphorylates GBF1 on 10 tyrosine residues; two of them, Y876 and Y898 are located near the C-terminus of the Sec7 GEF domain. Their phosphorylation promotes GBF1 binding to the GTPase; molecular modeling suggests partial melting of the Sec7 domain and intramolecular rearrangement. GBF1 mutants defective for these rearrangements prevent binding, carrier formation and GALNTs relocation, while phosphomimetic GBF1 mutants induce tubules. In sum, Src promotes GALNTs relocation by promoting GBF1 binding to Arf1. Based on residue conservation, similar regulation of GEF-Arf complexes by tyrosine phosphorylation could be a conserved and wide-spread mechanism.

Data availability

Source data of western blots and all quantifications have been provided for all figures.

Article and author information

Author details

  1. Joanne Chia

    Institute of Molecular and Cell Biology, Singapore, Singapore
    For correspondence
    zhchia@imcb.a-star.edu.sg
    Competing interests
    No competing interests declared.
  2. Shyi-Chyi Wang

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Sheena Wee

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  4. David James Gill

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  5. Felicia Tay

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
  6. Srinivasaraghavan Kannan

    Atomistic Simulations and Design in Biology, Bioinformatics Institute, Singapore, Singapore
    Competing interests
    No competing interests declared.
  7. Chandra S Verma

    Atomistic Simulations and Design in Biology, Bioinformatics Institute, Singapore, Singapore
    Competing interests
    No competing interests declared.
  8. Jayantha Gunaratne

    Institute of Molecular and Cell Biology, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5377-6537
  9. Frederic A Bard

    Institute of Molecular and Cell Biology, Singapore, Singapore
    For correspondence
    fbard@imcb.a-star.edu.sg
    Competing interests
    Frederic A Bard, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3783-4805

Funding

Astar (Core fund)

  • Frederic A Bard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Publication history

  1. Preprint posted: August 3, 2020 (view preprint)
  2. Received: March 23, 2021
  3. Accepted: December 5, 2021
  4. Accepted Manuscript published: December 6, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)

Copyright

© 2021, Chia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 611
    Page views
  • 108
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Desiree Schatton et al.
    Research Article

    Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.

    1. Cell Biology
    2. Physics of Living Systems
    Sohyeon Park et al.
    Research Article Updated

    In addition to diffusive signals, cells in tissue also communicate via long, thin cellular protrusions, such as airinemes in zebrafish. Before establishing communication, cellular protrusions must find their target cell. Here, we demonstrate that the shapes of airinemes in zebrafish are consistent with a finite persistent random walk model. The probability of contacting the target cell is maximized for a balance between ballistic search (straight) and diffusive search (highly curved, random). We find that the curvature of airinemes in zebrafish, extracted from live-cell microscopy, is approximately the same value as the optimum in the simple persistent random walk model. We also explore the ability of the target cell to infer direction of the airineme’s source, finding that there is a theoretical trade-off between search optimality and directional information. This provides a framework to characterize the shape, and performance objectives, of non-canonical cellular protrusions in general.