Learning developmental mode dynamics from single-cell trajectories

  1. Nicolas Romeo
  2. Alasdair Hastewell
  3. Alexander Mietke  Is a corresponding author
  4. Jörn Dunkel  Is a corresponding author
  1. Massachusetts Institute of Technology, United States

Abstract

Embryogenesis is a multiscale process during which developmental symmetry breaking transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell microscopy provide unprecedented insights into the collective cell dynamics at various stages of embryonic development. This rapid experimental progress poses the theoretical challenge of translating high-dimensional imaging data into predictive low-dimensional models that capture the essential ordering principles governing developmental cell migration in complex geometries. Here, we combine mode decomposition ideas that have proved successful in condensed matter physics and turbulence theory with recent advances in sparse dynamical systems inference to realize a computational framework for learning quantitative continuum models from single-cell imaging data. Considering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, we show how cell trajectory data on a curved surface can be coarse-grained and compressed with suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell dynamics enables a compact characterization of developmental symmetry breaking and the direct inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic conceptual foundation, we expect that mode-based model learning can help advance the quantitative biophysical understanding of a wide range of developmental structure formation processes.

Data availability

Raw data used in this study can be obtained athttps://doi.org/10.1038/s41467-019-13625-0https://imb-dev.gitlab.io/cell-flow-navigator/

The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Romeo

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6926-5371
  2. Alasdair Hastewell

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2633-380X
  3. Alexander Mietke

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    amietke@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1170-2406
  4. Jörn Dunkel

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    dunkel@math.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8865-2369

Funding

European Molecular Biology Organization (ALTF 528-2019)

  • Alexander Mietke

Deutsche Forschungsgemeinschaft (431144836)

  • Alexander Mietke

James S. McDonnell Foundation

  • Jörn Dunkel

Alfred P. Sloan Foundation (G-2021-16758)

  • Jörn Dunkel

MathWorks

  • Nicolas Romeo

MathWorks

  • Alasdair Hastewell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Version history

  1. Received: March 23, 2021
  2. Accepted: December 24, 2021
  3. Accepted Manuscript published: December 29, 2021 (version 1)
  4. Version of Record published: February 24, 2022 (version 2)

Copyright

© 2021, Romeo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,529
    Page views
  • 340
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Romeo
  2. Alasdair Hastewell
  3. Alexander Mietke
  4. Jörn Dunkel
(2021)
Learning developmental mode dynamics from single-cell trajectories
eLife 10:e68679.
https://doi.org/10.7554/eLife.68679

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Artur Ruppel, Dennis Wörthmüller ... Martial Balland
    Research Article Updated

    Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell–cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell–cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern (‘cell doublet’). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell–matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.

    1. Neuroscience
    2. Physics of Living Systems
    Kevin S Chen, Rui Wu ... Andrew M Leifer
    Tools and Resources Updated

    Olfactory navigation is observed across species and plays a crucial role in locating resources for survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying odor-taxis requires a detailed understanding of the animal’s sensory environment. For small model organisms like Caenorhabditis elegans and larval Drosophila melanogaster, controlling and measuring the odor environment experienced by the animal can be challenging, especially for airborne odors, which are subject to subtle effects from airflow, temperature variation, and from the odor’s adhesion, adsorption, or reemission. Here, we present a method to control and measure airborne odor concentration in an arena compatible with an agar substrate. Our method allows continuous controlling and monitoring of the odor profile while imaging animal behavior. We construct stationary chemical landscapes in an odor flow chamber through spatially patterned odorized air. The odor concentration is measured with a spatially distributed array of digital gas sensors. Careful placement of the sensors allows the odor concentration across the arena to be continuously inferred in space and monitored through time. We use this approach to measure the odor concentration that each animal experiences as it undergoes chemotaxis behavior and report chemotaxis strategies for C. elegans and D. melanogaster larvae populations as they navigate spatial odor landscapes.