1. Physics of Living Systems
Download icon

Learning developmental mode dynamics from single-cell trajectories

  1. Nicolas Romeo
  2. Alasdair Hastewell
  3. Alexander Mietke  Is a corresponding author
  4. Jörn Dunkel  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
Research Article
  • Cited 0
  • Views 303
  • Annotations
Cite this article as: eLife 2021;10:e68679 doi: 10.7554/eLife.68679

Abstract

Embryogenesis is a multiscale process during which developmental symmetry breaking transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell microscopy provide unprecedented insights into the collective cell dynamics at various stages of embryonic development. This rapid experimental progress poses the theoretical challenge of translating high-dimensional imaging data into predictive low-dimensional models that capture the essential ordering principles governing developmental cell migration in complex geometries. Here, we combine mode decomposition ideas that have proved successful in condensed matter physics and turbulence theory with recent advances in sparse dynamical systems inference to realize a computational framework for learning quantitative continuum models from single-cell imaging data. Considering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, we show how cell trajectory data on a curved surface can be coarse-grained and compressed with suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell dynamics enables a compact characterization of developmental symmetry breaking and the direct inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic conceptual foundation, we expect that mode-based model learning can help advance the quantitative biophysical understanding of a wide range of developmental structure formation processes.

Data availability

Raw data used in this study can be obtained athttps://doi.org/10.1038/s41467-019-13625-0https://imb-dev.gitlab.io/cell-flow-navigator/

The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Romeo

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6926-5371
  2. Alasdair Hastewell

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2633-380X
  3. Alexander Mietke

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    amietke@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1170-2406
  4. Jörn Dunkel

    Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    dunkel@math.mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8865-2369

Funding

European Molecular Biology Organization (ALTF 528-2019)

  • Alexander Mietke

Deutsche Forschungsgemeinschaft (431144836)

  • Alexander Mietke

James S. McDonnell Foundation

  • Jörn Dunkel

Alfred P. Sloan Foundation (G-2021-16758)

  • Jörn Dunkel

MathWorks

  • Nicolas Romeo

MathWorks

  • Alasdair Hastewell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: March 23, 2021
  2. Accepted: December 24, 2021
  3. Accepted Manuscript published: December 29, 2021 (version 1)

Copyright

© 2021, Romeo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 303
    Page views
  • 67
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Kevin D Gallagher et al.
    Research Article

    Pattern formation of biological structures involves the arrangement of different types of cells in an ordered spatial configuration. In this study, we investigate the mechanism of patterning the Drosophila eye epithelium into a precise triangular grid of photoreceptor clusters called ommatidia. Previous studies had led to a long-standing biochemical model whereby a reaction-diffusion process is templated by recently formed ommatidia to propagate a molecular prepattern across the eye. Here, we find that the templating mechanism is instead, mechanochemical in origin; newly born columns of differentiating ommatidia serve as a template to spatially pattern flows that move epithelial cells into position to form each new column of ommatidia. Cell flow is generated by a source and sink, corresponding to narrow zones of cell dilation and contraction respectively, that straddle the growing wavefront of ommatidia. The newly formed lattice grid of ommatidia cells are immobile, deflecting and focusing the flow of other cells. Thus, the self-organization of a regular pattern of cell fates in an epithelium is mechanically driven.

    1. Physics of Living Systems
    Debasmita Mondal et al.
    Research Article Updated

    Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.