Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation
Abstract
Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against trans-membrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further mechanistic studies to understand the enzyme coupling mechanism. Here we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data we suggest a new simple hypothetical coupling mechanism for the molecular machine.
Data availability
Cryo-EM density maps and atomic models are deposited into the PDB and EMDB databases with the following accession codes: cytoplasmic domain (PDB ID: 7NZ1, EMD-12661), membrane domain (PDB ID: 7NYH, EMD-12652), entire complex conformation 1 (PDB ID: 7NYR, EMD-12653), conformation 2 (PDB ID: 7NYU,EMD-12654), conformation 3 (PDB ID: 7NYV, EMD-12655).
-
Respiratory complex I from Escherichia coli - focused refinement of cytoplasmic armElectron Microscopy Data Bank ID EMD-12661.
-
Respiratory complex I from Escherichia coli - focused refinement of membrane armElectron Microscopy Data Bank ID EMD-12652.
-
Respiratory complex I from Escherichia coli - conformation 1Electron Microscopy Data Bank ID EMD-12653.
-
Respiratory complex I from Escherichia coli - conformation 2Electron Microscopy Data Bank ID EMD-12654.
-
Respiratory complex I from Escherichia coli - conformation 3Electron Microscopy Data Bank ID EMD-12655.
-
Respiratory complex I from Escherichia coli - focused refinement of cytoplasmic armRCSB Protein Data Bank ID 7NZ1.
-
Respiratory complex I from Escherichia coli - focused refinement of membrane armRCSB Protein Data Bank ID 7NYH.
-
Respiratory complex I from Escherichia coli - conformation 1RCSB Protein Data Bank ID 7NYR.
-
Respiratory complex I from Escherichia coli - conformation 2RCSB Protein Data Bank ID 7NYU.
-
Respiratory complex I from Escherichia coli - conformation 3RCSB Protein Data Bank ID 7NYV.
-
Crystal structure of the entire respiratory complex I from Thermus thermophilusRCSB Protein Data Bank ID 4HEA.
Article and author information
Author details
Funding
Fonds Wetenschappelijk Onderzoek (G0H5916N)
- Rouslan G Efremov
Fonds Wetenschappelijk Onderzoek (G.0266.15N)
- Rouslan G Efremov
H2020 European Research Council (726436)
- Rouslan G Efremov
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom
Publication history
- Received: March 23, 2021
- Preprint posted: April 10, 2021 (view preprint)
- Accepted: July 23, 2021
- Accepted Manuscript published: July 26, 2021 (version 1)
- Accepted Manuscript updated: July 27, 2021 (version 2)
- Version of Record published: August 11, 2021 (version 3)
Copyright
© 2021, Kolata & Efremov
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,885
- Page views
-
- 270
- Downloads
-
- 3
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.
-
- Structural Biology and Molecular Biophysics
Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin’s functions in protein–lipid interactions, lipid diffusion, and LD maturation. An all-atom simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin’s TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.