Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes

Abstract

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.

Data availability

Our RNA-Seq data has been deposited on the Gene Expression Omnibus (GEO) database. GEO Submission (GSE172181):https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172181

The following data sets were generated

Article and author information

Author details

  1. Francis Grafton

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Francis Grafton, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  2. Jaclyn Ho

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Jaclyn Ho, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  3. Sara Ranjbarvaziri

    Pediatrics (Cardiology),, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  4. Farshad Farshidfar

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Farshad Farshidfar, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  5. Anastasiia Budan

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Anastasiia Budan, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  6. Stephanie Steltzer

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Stephanie Steltzer, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  7. Mahnaz Maddah

    -, Dana Solutions, Palo Alto, United States
    Competing interests
    Mahnaz Maddah, is affiliated with Dana Solutions. The author has no other competing interests to declare..
  8. Kevin E Loewke

    -, Dana Solutions, Palo Alto, United States
    Competing interests
    Kevin E Loewke, is affiliated with Dana Solutions. The author has no other competing interests to declare..
  9. Kristina Green

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Kristina Green, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  10. Snahel Patel

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Snahel Patel, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  11. Tim Hoey

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Tim Hoey, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  12. Mohammad Ali Mandegar

    Tenaya Therapeutics, Tenaya Therapeutics, South San Francisco, United States
    For correspondence
    mandegar@tenayathera.com
    Competing interests
    Mohammad Ali Mandegar, is an employee of Tenaya Therapeutics and has stock holdings in the company..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5323-7891

Funding

No external funding was received for this work

Copyright

© 2021, Grafton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,448
    views
  • 630
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francis Grafton
  2. Jaclyn Ho
  3. Sara Ranjbarvaziri
  4. Farshad Farshidfar
  5. Anastasiia Budan
  6. Stephanie Steltzer
  7. Mahnaz Maddah
  8. Kevin E Loewke
  9. Kristina Green
  10. Snahel Patel
  11. Tim Hoey
  12. Mohammad Ali Mandegar
(2021)
Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes
eLife 10:e68714.
https://doi.org/10.7554/eLife.68714

Share this article

https://doi.org/10.7554/eLife.68714

Further reading

    1. Stem Cells and Regenerative Medicine
    Ryosuke Isotani, Masaki Igarashi ... Toshimasa Yamauchi
    Research Article

    Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.