Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes

  1. Francis Grafton
  2. Jaclyn Ho
  3. Sara Ranjbarvaziri
  4. Farshad Farshidfar
  5. Anastasiia Budan
  6. Stephanie Steltzer
  7. Mahnaz Maddah
  8. Kevin E Loewke
  9. Kristina Green
  10. Snahel Patel
  11. Tim Hoey
  12. Mohammad Ali Mandegar  Is a corresponding author
  1. Tenaya Therapeutics, United States
  2. Stanford University, United States
  3. Dana Solutions, United States

Abstract

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.

Data availability

Our RNA-Seq data has been deposited on the Gene Expression Omnibus (GEO) database. GEO Submission (GSE172181):https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172181

The following data sets were generated

Article and author information

Author details

  1. Francis Grafton

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Francis Grafton, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  2. Jaclyn Ho

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Jaclyn Ho, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  3. Sara Ranjbarvaziri

    Pediatrics (Cardiology),, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  4. Farshad Farshidfar

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Farshad Farshidfar, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  5. Anastasiia Budan

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Anastasiia Budan, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  6. Stephanie Steltzer

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Stephanie Steltzer, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  7. Mahnaz Maddah

    -, Dana Solutions, Palo Alto, United States
    Competing interests
    Mahnaz Maddah, is affiliated with Dana Solutions. The author has no other competing interests to declare..
  8. Kevin E Loewke

    -, Dana Solutions, Palo Alto, United States
    Competing interests
    Kevin E Loewke, is affiliated with Dana Solutions. The author has no other competing interests to declare..
  9. Kristina Green

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Kristina Green, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  10. Snahel Patel

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Snahel Patel, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  11. Tim Hoey

    Drug Discovery, Tenaya Therapeutics, South San Francisco, United States
    Competing interests
    Tim Hoey, is an employee of Tenaya Therapeutics and has stock holdings in the company..
  12. Mohammad Ali Mandegar

    Tenaya Therapeutics, Tenaya Therapeutics, South San Francisco, United States
    For correspondence
    mandegar@tenayathera.com
    Competing interests
    Mohammad Ali Mandegar, is an employee of Tenaya Therapeutics and has stock holdings in the company..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5323-7891

Funding

No external funding was received for this work

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Publication history

  1. Preprint posted: March 24, 2021 (view preprint)
  2. Received: March 24, 2021
  3. Accepted: July 27, 2021
  4. Accepted Manuscript published: August 2, 2021 (version 1)
  5. Version of Record published: August 16, 2021 (version 2)

Copyright

© 2021, Grafton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,308
    Page views
  • 456
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francis Grafton
  2. Jaclyn Ho
  3. Sara Ranjbarvaziri
  4. Farshad Farshidfar
  5. Anastasiia Budan
  6. Stephanie Steltzer
  7. Mahnaz Maddah
  8. Kevin E Loewke
  9. Kristina Green
  10. Snahel Patel
  11. Tim Hoey
  12. Mohammad Ali Mandegar
(2021)
Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes
eLife 10:e68714.
https://doi.org/10.7554/eLife.68714

Further reading

    1. Stem Cells and Regenerative Medicine
    Rachel Warren, Handeng Lyu ... Stijn P De Langhe
    Research Article Updated

    Idiopathic pulmonary fibrosis (IPF) consists of fibrotic alveolar remodeling and progressive loss of pulmonary function. Genetic and experimental evidence indicates that chronic alveolar injury and failure to properly repair the respiratory epithelium are intrinsic to IPF pathogenesis. Loss of alveolar type 2 (AT2) stem cells or mutations that either impair their self-renewal and/or impair their differentiation into AT1 cells can serve as a trigger of pulmonary fibrosis. Recent reports indicate increased YAP activity in respiratory epithelial cells in IPF lungs. Individual IPF epithelial cells with aberrant YAP activation in bronchiolized regions frequently co-express AT1, AT2, conducting airway selective markers and even mesenchymal or EMT markers, demonstrating ‘indeterminate’ states of differentiation and suggesting that aberrant YAP signaling might promote pulmonary fibrosis. Yet, Yap and Taz have recently also been shown to be important for AT1 cell maintenance and alveolar epithelial regeneration after Streptococcus pneumoniae-induced injury. To investigate how epithelial Yap/Taz might promote pulmonary fibrosis or drive alveolar epithelial regeneration, we inactivated the Hippo pathway in AT2 stem cells resulting in increased nuclear Yap/Taz, and found that this promotes their alveolar regenerative capacity and reduces pulmonary fibrosis following bleomycin injury by pushing them along the AT1 cell lineage. Vice versa, inactivation of both Yap1 and Wwtr1 (encoding Taz) or Wwtr1 alone in AT2 cell stem cells impaired alveolar epithelial regeneration and resulted in increased pulmonary fibrosis upon bleomycin injury. Interestingly, the inactivation of only Yap1 in AT2 stem cells promoted alveolar epithelial regeneration and reduced pulmonary fibrosis. Together, these data suggest that epithelial Yap promotes, and epithelial Taz reduces pulmonary fibrosis suggesting that targeting Yap but not Taz-mediated transcription might help promote AT1 cell regeneration and treat pulmonary fibrosis.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rafael Soares Godoy, Nicholas D Cober ... Duncan J Stewart
    Research Article Updated

    We sought to define the mechanism underlying lung microvascular regeneration in a model of severe acute lung injury (ALI) induced by selective lung endothelial cell ablation. Intratracheal instillation of DT in transgenic mice expressing human diphtheria toxin (DT) receptor targeted to ECs resulted in ablation of >70% of lung ECs, producing severe ALI with near complete resolution by 7 days. Using single-cell RNA sequencing, eight distinct endothelial clusters were resolved, including alveolar aerocytes (aCap) ECs expressing apelin at baseline and general capillary (gCap) ECs expressing the apelin receptor. At 3 days post-injury, a novel gCap EC population emerged characterized by de novo expression of apelin, together with the stem cell marker, protein C receptor. These stem-like cells transitioned at 5 days to proliferative endothelial progenitor-like cells, expressing apelin receptor together with the pro-proliferative transcription factor, Foxm1, and were responsible for the rapid replenishment of all depleted EC populations by 7 days post-injury. Treatment with an apelin receptor antagonist prevented ALI resolution and resulted in excessive mortality, consistent with a central role for apelin signaling in EC regeneration and microvascular repair. The lung has a remarkable capacity for microvasculature EC regeneration which is orchestrated by newly emergent apelin-expressing gCap endothelial stem-like cells that give rise to highly proliferative, apelin receptor-positive endothelial progenitors responsible for the regeneration of the lung microvasculature.